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3.1 A) Tijuana River Valley and relevant features. The Valley is bounded by the
City of Imperial Beach to the North, the City of San Diego to the East, and
the City of Tijuana to the South. B) Tijuana River Watershed and broader
geographical context. Notice the international aspect of the Watershed; about
one third of the Watershed area is within the US, and the rest is within Mexico.
C) Los Laureles community and Los Laureles main channel. The culvert is also
shown, which conveys storm water discharges from the channelized section of
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3.2 A) Federal Emergency Management Agency Flood Insurance Rate Map for
the Tijuana River Valley. The orange area represents the flooding extent
associated with the 0.2% annual exceedance probability (AEP) flood, while
the blue area represents the flooding extent of the 1% AEP flood. The red
hashed area delineates the regulatory floodway, where development must not
increase the designated base flood elevation by more than 0.3 m (1 ft). B)
IMPLAN flood hazard map for the Los Laureles subbasin. The red and blue
zones represent inundation extent for different exceedance probability flooding
events. However, details regarding mapping methodology and precise hazard
zone explanations were not available. . . . . . . . . . . . . . . . . . . . . . . 96

3.3 A) 1% annual exceedance probability (AEP) flood depths in the Tijuana River
Valley. Mapped flood depths result from either storm tides, canyon flows, or
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for waist to head, and greater than 1.69 m for above head depths. . . . . . . 97

3.4 A) Flood force with 1% annual exceedance probability (AEP) in the Tijuana
River Valley. B) Flood force with 1% AEP in Los Laureles. We use vh as a
proxy for the flood force, since contours are specifically different thresholds of
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cars sliding at 0.8 m2/s [Xia et al., 2011], and structural damage beginning at
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3.5 A) Annual exceedance probability (AEP) of ankle depth flooding in the Ti-
juana River Valley. Contours represent the annual probability that either
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3.6 Results of the exit survey designed to provide insight on relevant flood fre-
quencies, drivers, and environmental conditions. Column (A) includes TRV
responses (22 participants), and column (B) includes LL responses (33 par-
ticipants). The most distinct responses include the reported utility of maps
illustrating more frequent events (TRV) and pooled rainfall (LL). The lack of
a clear preference for relevant environmental conditions is worth noting. Here,
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model grid. Comparison between A) and B) shows that traditional hydrologic-
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quests. Notice that A) is described by the AEP of the flood depths, whereas
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Preparing for what? Design floods and environmental change
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The United States experienced record-breaking losses from natural disasters in 2017. Dam-

ages from floods were particularly costly, largely because of the high exposure and value of

capital at risk. Without targeted mitigation strategies, flood losses are expected to escalate

due to urbanization and the projected changes to the frequency of extreme weather events.

This dissertation provides and evaluates engineering methods for flood risk mitigation in

an era of global change. The body of work contains three research articles: two provide

and critique methodology for incorporating changing environmental conditions in the design

of flood control infrastructure along rivers and coasts, and the third contributes guidance

for improving the clarity and utility of commonly produced flood hazard maps. The results

demonstrate that attempting to forecast the impact of changing environmental conditions on

extreme floods substantially increases predictive uncertainty relative to traditional methods.

Thus, so-called “non-stationary” methods have limited utility for decision making and are

difficult to use as the basis for infrastructure design or mitigation planning. Our inability to

meaningfully forecast changes in extremes over long time periods has important implications

for engineering, but the first step is to acknowledge the unknown. Additional factors of

safety, adaptable decision making, and better communication of what we actually do know

are the keys to successfully reducing losses.
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Chapter 1

Predicting non-stationary flood

frequencies

1.1 Chapter Summary

Non-stationary extreme value analysis (NEVA) can improve the statistical representation of

observed flood peak distributions compared to stationary (ST) analysis, but management of

flood risk relies on predictions of out-of-sample distributions for which NEVA has not been

comprehensively evaluated. In this study, we apply split-sample testing to 1,250 annual

maximum discharge records in the United States and compare the predictive capabilities of

NEVA relative to ST extreme value analysis using a log-Pearson Type III (LPIII) distribu-

tion. The parameters of the LPIII distribution in the ST and non-stationary (NS) models

are estimated from the first half of each record using Bayesian inference. The second half of

each record is reserved to evaluate the predictions under the ST and NS models. The NS

model is applied for prediction by (1) extrapolating the trend of the NS model parameters

throughout the evaluation period and (2) using the NS model parameter values at the end of
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the fitting period to predict with an updated ST model (uST). Our analysis shows that the

ST predictions are preferred, overall. NS model parameter extrapolation is rarely preferred.

However, if fitting period discharges are influenced by physical changes in the watershed, for

example from anthropogenic activity, the uST model is strongly preferred relative to ST and

NS predictions. The uST model is therefore recommended for evaluation of current flood

risk in watersheds that have undergone physical changes.

1.2 Introduction

Dynamic flood risk is common: both natural and anthropogenic influences can alter flood

behavior. For example, the rapid development of watersheds and physical alterations to

rivers and coastlines contributed to variable flood risk throughout the 20th century [Villarini

and Smith, 2009, Peel and Blöschl, 2011, Vogel et al., 2011]. A warming climate increases

the water holding capacity of the atmosphere which directly affects precipitation extremes

and flood risk over time [Karl et al., 2009, Trenberth, 2011, Cheng and AghaKouchak, 2014].

Several studies have quantified societal exposure to current and intensified flooding in the

21st century [Hallegatte et al., 2013a, Hirabayashi et al., 2013, Milly et al., 2002, Apel

et al., 2006], and in the absence of adaptation strategies project a staggering global loss on

the order of 1 trillion US dollars per year by 2050 [Hallegatte et al., 2013a]. Indeed, the

threat of escalating exposure requires new approaches for both flood risk management and

characterization.

The most commonly applied method to characterize flood risk is known as flood frequency

analysis (FFA), which estimates the recurrence rate of rare flooding events based on the

annual exceedance probability of flood discharges. In the United States, engineers utilize

FFA to determine the 100-year flood discharge, which is a design consideration for hydraulic

structures and used to delineate areas subject to mandatory flood insurance. The 100-year

2



www.manaraa.com

discharge is expected to occur or be exceeded once every 100 years, and has an estimated

annual exceedance probability of 1%. In general, there are two commonly applied methods

to estimate the exceedance probabilities necessary for riverine FFA [Centre for Ecology and

Hydrology, 2008]. In the first approach, a computer model simulates the rainfall-runoff rela-

tionship by numerical solution of the governing hydrologic equations. The calibrated model

then estimates the flood discharges for different rainfall events with established exceedance

probabilities. The second and alternative approach does not rely on a numerical model, but

uses only historic observations of flood discharges. This method is based on extreme value

analysis (EVA), where a probability distribution is fitted to the record of flood discharges

themselves. The fitted distribution is then used to estimate the exceedance probability of

specific flood discharges. The latter method is preferred in practice if sufficiently long records

of flood discharges are available [Centre for Ecology and Hydrology, 2008], and is therefore

the subject of the present study.

Both of these commonly applied methods are built on the assumption of constant flood

frequency with respect to time, which implies the statistics of extreme discharges (e.g., mean

and/or standard deviation) are time-invariant. This so-called stationary (ST) assumption is

quite restrictive, since a warming climate creates the possibility of unprecedented changes to

observed flood regimes [Min et al., 2011, Kunkel et al., 2013], and anthropogenic watershed

influences can alter the mean and variance of peak flood peaks [Villarini and Smith, 2009,

Vogel et al., 2011]. The known limitations of ST FFA, along with the alarming societal

impacts of intensified flooding, has given rise to the development and use of non-stationary

(NS) approaches. This alternative FFA method does not rely on the ST assumption, but

rather recognizes time variant flood frequencies.

Several different approaches have been published in the literature to handle the so-called “NS

issue” in FFA [Olsen, 2002, Raff et al., 2009, Jain and Lall, 2001], and new national and state

wide policies actually require the consideration of changing flood frequencies for planning,
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design, and risk management [European Commission, 2007, Salas et al., 2012]. An excellent

review of such methods applied in Europe was reported by Madsen et al. [2013]. The two NS

FFA methods described in this review include (1) the use of precipitation projections from

future climate scenarios in rainfall-runoff models and (2) the use of a safety margin to adjust

the design flood estimates derived from ST extreme value analysis (SEVA). While countries

such as Norway, United Kingdom, Belgium, and Germany have adopted the safety margin

approach in engineering guidelines [Madsen et al., 2013], the underlying ST assumption is

often challenged and relaxed in the scientific literature to allow application of NS extreme

value analysis (NEVA) [AghaKouchak et al., 2013, Begueria and Vicente-Serrano, 2006,

Begueria et al., 2011, Cheng et al., 2014a, Cooley, 2009, Gilleland and Katz, 2011, Griffis

and Stedinger, 2007, Katz, 2010, Lopez and Frances, 2013, Salas and Obeysekera, 2014,

Silva et al., 2015, Stedinger and Griffis, 2011a, Tramblay et al., 2014, Cheng et al., 2015,

Villarini et al., 2009b, Jakob, 2013, Steinschneider and Lall, 2015]. Indeed, the review by

Madsen et al. [2013] concludes on page 33 that moving towards a new NS framework, based

on the use of NEVA, is an “important aspiration within the European hydrological science

community.”

NEVA is an important extension of SEVA which enables the parameters of the extreme value

distribution to vary with time. This allows the parameters of the distribution to capture

trends in the flood frequencies [Salas and Obeysekera, 2014]. In theory, these trends can be

extrapolated to estimate, for example, the distribution of flood discharges in 2050. Numerous

studies have shown that NEVA improves the statistical representation of historic hydro-

climatic data [Lopez and Frances, 2013, Strupczewski et al., 2001, Villarini et al., 2009b],

but the authors consistently caution against using NEVA for out-of-sample prediction. In

this study, we apply split-sample testing to 1,250 annual maximum discharge records and

compare the predictive capabilities of NEVA relative to SEVA using a log-Pearson Type III

(LPIII) distribution. Specifically, we reserve the second half of each data record to evaluate

predictions under the calibrated ST and NS models. We use two different approaches to
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predict the out-of-sample data with the NS model, which are described along with the

ST/NS models in Section 1.3. Section 1.4 includes the United States Geological Survey

(USGS) records used in this study. The parameter estimation procedure is presented in

Sections 1.5.1-1.5.1, where the parameters of the LPIII distribution in the ST and NS models

are inferred from the first half of each record using Markov Chain Monte Carlo (MCMC)

simulation with the DREAM(ZS) algorithm. The posterior parameter distributions and model

fit metrics are compared in Section 1.5.1, along with a discussion of issues associated with NS

model section. Section 1.5.2 outlines our application of Bayesian hypothesis testing which

we use to evaluate, compare, contrast, and juxtapose the predictions made by the competing

models. The results of this analysis are presented in Sections 2.4-2.5, where we assess (1)

which of the three predictions, under the LPIII distribution, describe most accurately the

distribution of the out-of-sample flood discharges, and (2) which diagnostics are useful for

model selection. The paper concludes in Section 1.8 with recommended applications of

NEVA for prediction of flood discharges in the LPIII distribution. Appendix A includes the

mathematical definition of the LPIII distribution, and the supporting information includes

a MATLAB R© program based on the methods outlined in Sections 1.5.1-1.5.1 which can be

used for inference of the ST/NS LPIII model parameters.

1.3 Stationary or Non-Stationary?

FFA in the United States is conducted according to the guidelines outlined in hydrologic

Bulletin 17B [Interagency Committee on Water Data, 1982], which are built on the ST

assumption. NS extensions of the standardized FFA guidelines in the United States have

been considered in several studies [Stedinger and Griffis, 2011a, Griffis and Stedinger, 2007].

For instance, Stedinger and Griffis [2011a] use a time-dependent mean to account for NS

in the Pearson Type III (PIII) distribution used widely for FFA in the United States and
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Australia [Pilgrim, 2001]

log10 (Qt) ∼ PIII(μt, σ, γ) (1.1)

where Qt signifies the annual maximum discharge, t denotes time, and μt, σ, and γ char-

acterize the mean, standard deviation, and skewness of the PIII distribution, respectively.

The log10-transformation stabilizes the variance of the annual peak discharges and makes the

transformed data more amenable to the PIII distribution. We can assume a simple linear

trend for the mean of the PIII distribution

μt = μo + αt (1.2)

where μo signifies the intercept and α is the slope of the (t, μt) relationship. The value of

μo is equivalent to the PIII mean of the first year of the discharge record. If flood peaks

are assumed to be stationary then α = 0 suffices in Equation 1.2 and the resulting model

simplifies to the ST PIII distribution. Joint Bayesian inference of the PIII parameters {σ,
γ} and latent variable α from a n-record, Q = {Q1, . . . , Qn}, of observed annual peak

discharges, would help judge which statistical model, NS or ST, would receive most support

from the data. This would require knowledge of the marginal likelihood, or model evidence,

which integrates model accuracy, uncertainty, and complexity. Appendix A lists analytic

expressions for the probability density and cumulative distribution functions of the PIII

distribution. We adopt the notation LPIII to clarify the use of log-transformed discharge

data, and refer to Equation 1.1 as ST LPIII model (α = 0) or NS LPIII model (α > 0). For

clarity, we use μ to denote the time invariant mean of log10(Q) in the ST LPIII model.

The use of a linear time-dependency of the LPIII mean in Equation 1.1 is rather convenient

and simplistic, but has several important implications. First, a trend in the logarithmic mean

of Qt equates to an exponential trend in the mean of the flood peaks [Read and Vogel, 2016].
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This assumption may seem questionable but is supported by analysis of flood trends in the

United States [Vogel et al., 2011] and United Kingdom [Prosdocimi et al., 2014]. Second,

despite the use of a constant value for σ, the standard deviation of the arithmetic flood peaks

will increase with the logarithmic mean, μt, of the LPIII distribution. This intrinsic property

is desirable since nonstationarity would likely not only alter the mean of the flood peaks but

simultaneously also affect their associated dispersion. Third, Equation 1.1 does not provide

guidance on the governing physical factors, climate signals, and/or anthropogenic causes that

may explain temporal changes in the frequencies of the annual flood peaks. Fortunately, the

parameter estimation methodology presented herein supports the use of much more advanced

(t, μt) relationships with covariates other than time. Examples include changes in land-use,

urbanization, and variations in the North Atlantic Oscillation (NAO) and El Nino Southern

Oscillation (ENSO). Yet, these covariates are not always readily available, nor may they

correlate sufficiently with flooding events [Archfield et al., 2016]. We, therefore, resort herein

to a purely statistical description of annual discharge peaks and use time as a proxy and

explanatory variable of nonstationarity. In fact, the LPIII model used herein (with α > 0)

is analogous to the simplest of NS models presented by Stedinger and Griffis [2011a].

Figure 1.1 demonstrates the additional flexibility attained through NEVA relative to SEVA.

Figure 1.1A shows the affect of γ on Equation 1.1, while Figure 1.1B shows the affect of α on

Equation 1.1. Notice the traditional ST LPIII model represents different tailing behavior as

γ changes, but the distribution of log10(Q) must remain fixed in time. Indeed, the NS LPIII

model includes only one additional parameter, α, but adds the dimension of time to our EVA.

The NS model can even behave as a ST distribution, when α is zero. However, it is not clear

if predictions of flood peak distributions under a NS model are an improvement relative to ST

predictions, despite the additional flexibility. The primary concern is whether the NS signal

is clear enough to accurately estimate trend parameters, such as α in this study. Moreover,

different NS models will lead to different predictions, and there are multiple approaches for

prediction under a single NS model. This raises the question of whether we actually do
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Figure 1.1: (A) ST LPIII distribution with variable shape parameter. The red, black, and
blue lines correspond to γ values of 1.5, 0 , and -1.5, respectively. (B) NS LPIII distribution
with variable trend parameter. The red, black, and blue lines correspond to α values of 0.015,
0, and -0.015, respectively. In (B), notice that the tail of the black distribution becomes closer
to the mode of the red distribution over time.
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Figure 1.2: (A) Maximum a posteriori (MAP) estimate of the location parameter (mean of
log10(Q)) under the ST (blue line), uST (gold line), and NS (red line) models inferred from
the Smith River fitting period Q (black line). The colored shading represents the respective
95% credible intervals of the location parameters, and the black cross denotes the end of the
fitting period. (B - D) Predictions of out-of-sample density under the ST (blue line), uST
(gold line), and NS (red line) models derived from the MAP parameter estimates. The black
histograms represent the empirical density of the fitting period. Notice that (C - D) show
predictions under the uST and NS models moving away from the observed density, and the
95% credible intervals are wider under the NS and uST models relative to the ST model.

better by including NS in our analysis [Stedinger and Griffis, 2011a].

To illustrate these issues, Figure 1.2A shows the ST and NS LPIII models fit to the first

half of the annual maximum discharge record from the Smith River near Crescent City,

CA (for details see Section 1.5). Here, we use two different approaches to predict the out-

of-sample data with the NS model. Under the first approach, the trend of the NS model

parameters is extrapolated throughout the evaluation period, which represents the entirely

NS prediction. In the second approach, the NS model parameter values at the end of the

fitting period are used to predict with a ST model, or the ST parameters are “updated”

by the NS model (hereafter denoted uST). Including the traditional ST prediction leads to

three different representations of the out-of-sample density, which are shown relative to the

in-sample density in Figure 1.2B-D. During the fitting period, the annual maximum discharge
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of the Smith River exhibits a detectable trend at the 0.05 significance level (Mann Kendall

trend test [Mann, 1945, Kendall, 1976]), which is reflected by the trend in μt. In the NS

case, μt has substantially increased by the end of the fitting period, indicating that the mean

and scale of the annual maximum discharges have changed throughout the record. In the

ST case, μ remains constant. The difference in μ between the two approaches is certainly

significant from a planning and engineering design perspective. The 99th quantile of the

ST LPIII distribution (q 99) is used to designate the special flood hazard area and design

critical infrastructure such as bridges and levees in the United States [Federal Emergency

Management Agency, 2009, Interagency Committee on Water Data, 1982]. Under the NS

LPIII model at the end of the fitting period (or uST model), q 99 is equivalent to 9,100 m3/s,

which is 40% greater than the ST estimate (Figure 1.2B-D). Assuming that flood frequencies

are indeed non-stationary, and the distribution of annual maximum discharges continues to

change according to the best fit NS model parameters, the value of q 99 under the NS model

is 14,700 m3/s by the year 1992 and 2.3 times larger than its counterpart of the ST model.

The use of the NS LPIII model for cases when flood frequencies were actually ST can lead

to overestimation of flood peaks, and hence over-engineered structures. Even worse, falsely

selecting the ST model could lead to under-designed infrastructure and potential disaster.

This decision would be difficult in practice, in the absence of guidance on NS model selection

and lack of recommendations for FFA in case of a trend in the historic record. Moreover,

it is unclear how to use a NS model for prediction. Is it better to assume flood frequencies

will continue to change according the trends inferred from the historic record, or should we

simply use the most recent NS parameterization for prediction? These issues motivate the

split-sample testing used herein, where the predictions of the calibrated ST, uST, and NS

models are evaluated using Bayesian hypothesis testing.
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1.4 Stream Gage Records

We use a large data-set of annual maximum discharge records to evaluate the predictive

abilities of the ST, uST, and NS models. The majority of records used in this study orig-

inate from the set of 1861 stream gages which were selected for potential use in the Model

Parameter Estimation Project (MOPEX) [Schaake et al., 2006, Slack and Landwehr, 1992,

Wallis et al., 1991]. The gages were believed to be unaffected by upstream regulation and

watershed development at the time the dataset was compiled (1991/1992), suiting the needs

of MOPEX. Since then, many records have been anthropogenically influenced. We rely on

USGS data flags to identify influenced records, specifically flags 5 and 6 to identify records

affected by upstream regulation and diversion, and flag C to identify records affected by land

use changes or channelization. In this study, watersheds that have experienced anthropogenic

influences are included in the analysis since the ST assumption is likely violated under these

circumstances. An additional 25 watersheds affected by land use changes or channelization

were added to the record pool since relatively few gages of this category were included in the

original MOPEX dataset. Records with fewer than 60 observations were excluded to ensure

the availability of at least 30 observations in the fitting and evaluation period.

We denote the full record of measured annual maximum discharges, Q, and the fitting

period data, X. The fitting period data includes the first half of measured peak discharges,

X = log10({Q1, ..., Qn}), where Q denotes an observation within the full record, n = �N/2�,
and N is the number of observations in the full record. The evaluation data, X∗, includes

the remaining observations, or X∗ = log10({Qn+1, ..., QN}). Record splitting in this manner

resulted in variable fitting period lengths, with 40 observations representing the average

data availability for parameter inference. In this study, historic peaks were removed from

the record. Also, records with no-flow observations (i.e. zero discharge) were excluded from

the analysis to simplify the use of the LPIII distribution. This leads to a data set of 1,250

annual maximum discharge records. The locations of tested records are shown in Figure 1.3A,
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while the fitting period characteristics are shown in Figure 1.3B-D. Trend analysis shown in

Figure 1.3 was conducted according to the Mann-Kendall test for monotonic trends [Kendall,

1976, Mann, 1945]. Hereafter, a “significant trend” refers to a rejection of the null hypothesis

of no trend by the Mann-Kendall trend test at the 0.05 significance level. We acknowledge

that there are no good statistical reasons to omit historic peaks and records with zero flow

observations from the data-set [Reis Jr. and Stedinger, 2005, Interagency Committee on

Water Data, 1982], yet the focus of this study is on assessing predictions made under ST,

uST, and NS models fit to a systematic record.
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Figure 1.3: (A) Location of annual maximum discharge records and trends detected according
to the Mann-Kendall trend test at the 0.05 significance level. (B) Fitting period trend
characteristics as a percentage of all records tested. (C) Anthropogenic watershed influences
as a percentage of all records tested. Land use changes or channelization refers to USGS
record flag “C”, while regulation and diversion refers to USGS record flag 5 or 6. (D) Fitting
period length as a percentage of all records tested.

13



www.manaraa.com

1.5 Bayesian Inference

1.5.1 Parameter Estimation

Estimating the parameters of an extreme value distribution is important for reliable fre-

quency analysis. This process is further complicated by the introduction of NS models,

where structural-trend parameters must also be inferred from limited data. In this study,

we are primarily interested in inferring the ST LPIII parameters, θs = {μ, σ, γ}, and the NS

LPIII parameters, θn = {μo, σ, γ, α}, where μt = μo + αt. While there are certainly other

viable parameterizations of the NS LPIII model, we do not consider NS models describing

changes in σ and γ because it is unlikely that these trends can be estimated from common

record lengths [Yu et al., 2015]. We also do not consider trend models more complex than

the simple linear model, due to the uncertainty introduced by additional trend parameters.

Uncertainty introduced by NS model complexity has been reported as a major drawback to

NEVA, which is the primary argument against widespread application made by Serinaldi and

Kilsby [2015a]. Therefore, any meaningful comparison between flood discharge predictions

based on ST and NS models must account for parameter uncertainty introduced by the NS

model. The issue of parameter uncertainty motivates the Bayesian approach for parameter

inference and model comparison. Bayesian parameter estimation results in distributions of

parameter values rather than point estimates, which is especially useful for hypothesis testing

and uncertainty quantification. Thus, we apply Bayesian parameter estimation via MCMC

and the DREAM(ZS) algorithm for robust uncertainty quantification and model comparison.

Under the Bayesian approach for parameter estimation, Bayes’ theorem is used to calculate

the posterior density of parameter values

p(θj|X,Mj) =
p(θj|Mj)L(θj|X,Mj)

p(X|Mj)
(1.3)

14



www.manaraa.com

where p(θj|X,Mj) represents the posterior density of parameter vector, θj, given the fit-

ting period data, X, and the model of interest, Mj. The subscript j denotes competing

model classes, and in this study j = {“s”, “n”, “u”}, which stand for the ST, NS, and

uST models, respectively. Here, p(θj|Mj) represents the prior density of θj given Mj,

and L(θj|X,Mj) represents the likelihood of parameter values θj, given X and Mj. The

denominator, p(X|Mj), is known as the marginal likelihood or evidence and acts as a nor-

malization constant so that p(θj|X,Mj) integrates to one. The evidence is obtained through

integration over the parameter space

p(X|Mj) =

∫
p(θj|Mj)L(θj|X,Mj)dθj (1.4)

where p(X|Mj) also quantifies the probability of seeing the data that were actually observed

under the competing models. Therefore, the evidence is particularly useful for model selec-

tion, because the model which maximizes Equation 1.4 is a better descriptor of the data.

Bayesian hypothesis testing and the evidence will be discussed further in Section 1.5.2. How-

ever, Bayesian parameter estimation does not necessarily require the value of p(X|Mj), since

parameter inference can be made from the un-normalized density

p(θj|X,Mj) ∝ p(θj|Mj)L(θj|X,Mj) (1.5)

when MCMC methods are used to sample from the posterior, as applied herein. For now,

we are interested in using Equation 1.5 to estimate the un-normalized posterior density of

both θs and θn given the first half of annual maximum discharge records. Equation 1.5 is

not directly applied to infer θu, since the parameters of the uST model are derived from

p(θn|X,Mn). In most practical applications, estimating p(θj|X,Mj) is accomplished by

sampling from the posterior after specifying p(θj|Mj) and L(θj|X,Mj).
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Likelihood Function (Fitting Period)

Conceptually, L(θj|X,Mj) represents how plausible a parameter combination is after ob-

serving X, which quantifies the information content of the data. Specifically, L(θj|X,Mj) is

the probability density of X according to Mj with parameterization θj. For the parameter

inference procedure, the likelihood function is defined as

L(θj|X,Mj) =
n∏

i=1

p(Xi|θj,Mj) (1.6)

where n is the number of observations in the fitting period, and Xi represents the ith ob-

servation. In this study, p(Xi|θj,Mj) is obtained by evaluating an analytic expression of

the PIII probability density function (Equation A.1 or A.3) at observation Xi = log10(Qi)

and parameterization θj under Mj. Here, j = {“s”, “n”}, which distinguishes Equation 1.6

applied to determine the likelihood of the ST and NS model parameters, respectively.

Under Ms, the parameter values within θs = {μ, σ, γ} are constant with respect to time, and

therefore Equation 1.6 is evaluated at a fixed parameterization of the PIII density function

for i = {1, ..., n}. However, this is not the case under Mn. When Equation 1.6 is applied

to calculate the likelihood of θn = {μo, σ, γ, α}, the parameterization of the PIII density

functions changes with i = {1, ..., n}, according to the linear trend model. Therefore, at

each observation Xi, there is a unique parameterization of the PIII density function

θi
n = {μo + αti, σ, γ} (1.7)

where ti is the time (in years) between the first and the ith observation. In this study, ti is

considered the covariate, since Mn parameter values depend on and change with ti. For a

more general description of covariate modeling see Renard et al. [2013], Coles [2001]. There

are several properties of Ms and Mn with respect to the likelihood function that are worth
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noting.

First, Ms is a special case of Mn when θi
n is constant or α = 0. For records without a strong

trend, Equation 1.6 will be maximized near α = 0 under Mn, and therefore the parameter

values of θn will approach θs. In this scenario, α becomes a nuisance parameter, and Mn is

over-parameterized. This suggests that if α is inferred using maximum likelihood, there must

be a time dependant trend in X for Mn to significantly differ from Ms. Secondly, assuming

that a trend is observed in X, Mn has a much greater ability to maximize Equation 1.6

relative to Ms. This is because in the NS case, the location of the distribution changes

with the trend in X, enhancing the probability density near the observations relative to the

fixed μ under Ms. The NS model’s ability to maximize Equation 1.6 relative to the ST

model is problematic for comparison of Mn and Ms based on likelihood metrics alone, since

likelihood based metrics will almost certainly favor Mn for records with detected trends.

Prior Distributions (Fitting Period)

While L(θj|X,Mj) represents the plausibility of θj after considering the data, p(θj|Mj)

represents knowledge of θj before the data is considered. Often, p(θj|Mj) is referred to as

the prior. The prior represents an analyst’s knowledge of θj before any data is collected,

which is described mathematically by the joint probability of the parameters within θj. The

formal inclusion of prior knowledge about θj in the parameter inference process is unique

to Bayesian inference. The choice of priors is subjective, but it allows the analyst to use

information other than the data for parameter inference.

While several studies have specified highly informative joint-priors for hydrologic data through

regional analysis or eliciting expert opinion [Behrens et al., 2004, Perreault et al., 2000, Re-

nard et al., 2006b], we decided to employ relatively uninformative priors so that inferred

values of θs are similar to parameterizations produced following standard practice in the
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Table 1.1: Model parameters and prior distributions

Mn Parameters Scale Units Prior a b

μo log10 m3/s U(a, b) -10 10
σ log10 m3/s U(a, b) 0 2
γ log10 − N (γr, SDγr) − −
α log10 m3/(s · year) U(a, b) -0.15 0.15

Ms Parameters Scale Units Prior a b

μ log10 m3/s U(a, b) -10 10
σ log10 m3/s U(a, b) 0 2
γ log10 − N (γr, SDγr) − −

United States. In the United States, μ and σ are determined entirely through consideration

ofX, while γ is based on a regional and site specific estimate [Interagency Committee on Wa-

ter Data, 1982]. An analogous parameterization can be produced in a Bayesian framework

by using uninformative priors on μ and σ with an informative prior specified on γ.

For uninformative, yet proper priors, the marginal priors for μ, μo, σ and α were specified

as a uniform distribution, U(a, b), where a and b represent the lower and upper bounds of

the uniform priors, respectively. Our primary reason for using bounded priors is algorithmic

efficiency. Indeed, such prior enhances considerably the convergence speed of the DREAM(ZS)

algorithm (Section 1.5.1), a particularly important consideration in the face of the relatively

large number of data records used in the present study. Table 1.1 lists the selected bounds on

the uniform priors, which were chosen based on physical reasoning. For example, the bounds

on μ restrict the location of the distribution to values between 10−10 m3/s and 1010 m3/s,

which adequately encompass realistic values of μ. We confirmed that none of the posteriors

were truncated by the prior bounds following the fitting procedure.

Selecting a distribution that represents a lack of knowledge is challenging and subjective, and

the bounded uniform distribution is certainly not the only viable uninformative prior. For

example, Reis Jr. and Stedinger [2005] use Jeffrey’s prior as an uninformative prior on the

scale parameter, and a normal a distribution with a large variance for an uninformative prior
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describing the location parameter. Both approaches will lead to inference of the location and

scale parameters based on the likelihood of X, or the information content of the data alone.

In contrast, we use an informative prior on γ because information other than X is typically

available and used to estimate shape parameters of hydrologic variables.

Since γ controls the tail behavior and extrapolation to the unobserved quantiles of the LPIII

distribution, it is difficult to determine from a single record. Therefore, estimates of γ are

usually based on a site specific and regional approximation. Bulletin 17B approximates γ

by weighting the station estimate, γs, with a regional estimate, γr. In the Bulletin 17B

guidelines, γs is determined by calculating the sample skew of X, and γr is typically taken

from an isocline map of regional skews. The weights on γs and γr are inversely proportional

to their respective mean square errors. A Bayesian adaptation of this weighting process can

be accomplished for Mn and Ms through an informative marginal prior

p(γ|Mj) ∼ N (γr, SDγr) (1.8)

where SDγr is the root mean-square error of the regional skew, γr, and N denotes the normal

distribution. Values of γ close to the regional estimate are assigned a high prior probability,

and thus the prior reflects regional knowledge of γ. In this study, γr was obtained for

each record by extracting values of γr from a digitized version of the Bulletin 17B Plate

1 generalized skew map. Here, SDγr was set equal to 0.55 per Bulletin 17B guidelines.

Without considering the regional skews through the informative prior, posterior γ would be

fairly different from γ estimated in practice. We also note that using an informative prior for

only the shape parameter has been recommended for NS model parameter estimation in the

generalized extreme value distribution (GEV) [El Adlouni et al., 2007], and this approach

was previously designated the generalized maximum likelihood (GML) method in the ST

case [Martins and Stedinger, 2000]. Ouarda and El-Adlouni [2011] apply the GML method

for inference of NS GEV parameters in a Bayesian framework, which parallel the methods
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applied in this study. The difference herein is that the generalized prior on γ has been

adapted to incorporate regional information.

MCMC Simulation with the DREAM(ZS) Algorithm

Now that p(θj|Mj) and L(θj|X,Mj) have been defined, the posterior distribution of θs

and θn can be approximated through sampling of the posterior. Sampling methods such

as MCMC are required for most applications of Bayes’ theorem, since p(θj|X,Mj) is often

analytically intractable. Essentially, MCMC methods provide a sample from the posterior

distribution, and parameter inference is made from the generated sample. For a complete

description of posterior sampling via Monte Carlo simulation, please see Section 2 of Vrugt

[2016].

In this study, we use the DiffeRential Evolution Adaptive Metropolis algorithm (DREAM(ZS))

to generate samples of the target distribution [Vrugt et al., 2009, Laloy and Vrugt, 2012a],

and assess convergence through the R̂-statistic of Gelman and Rubin [1992]. The MCMC

procedure utilized three Markov chains, each including 8000 generations of θj. Fifty percent

of the generations from each chain were discarded as burn-in, and the remaining generations

were combined into a single matrix. This procedure results in a posterior sample size of 12,000

generations of θj for each record and model. Parameter inference and model comparison is

now based on the posterior samples of θs and θn produced by the MCMC algorithm. The

parameters of the uST distribution, θu = {μn, σ, γ}, are derived from the posterior sample

of θn. Here, μn represents the parameter value of μt at the end fitting period under Mn.

The distribution of μn was obtained by applying Equation 1.2 at each posterior sample of

θn, with t equal to the time between the first and the last year of the fitting period. The

uST σ and γ parameters were taken from the posterior sample of θn, and not θs.
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Figure 1.4: Marginal posterior distributions of θn under the NS model (red histograms),
θs under the ST model (blue histograms), and θu under the uST model (gold histograms),
given the data in the Smith River fitting period. Black lines represent the marginal prior
distributions, and the black crosses show the MLE of θj under the three models. Notice that
the MLE of γ under Mn is very unlikely according to the prior distribution, and posterior
θn favors lower values of σ than posterior θs.

Posterior Comparisons

We now return our attention to the Smith River data record, previously shown in Figure 1.2.

Figure 1.4 presents the marginal posterior distributions of θn (top row), θs (middle row),

and θu (bottom row) given the data in the Smith River fitting period. The prior density

and maximum likelihood parameter estimates are represented by the black lines and black

crosses, respectively. The maximum likelihood estimate (MLE) of θj, denoted θ̂j, is taken as

the parameter combination from the posterior sample which maximized Equation 1.6. This

Figure highlights several important results. Firstly, Figure 1.4 shows that the informative

prior on γ causes the marginal posterior distribution to be centered between the MLE and

the mode of the informative prior. Since the MLE of γ is the site specific skew, and the
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prior mode is the regional skew, posterior γ represents a combination of the site specific

and regional information. This result demonstrates the utility of informative priors for the

inference of shape parameters.

Secondly, notice that the posterior under Mn favors lower values of σ than the posterior

under Ms. This difference can be explained by how the two models represent records that

exhibit a strong trend. The apparent trend in the data, which is shown in Figure 1.2, is simply

variance about the mean of the data in the context of a ST model. Therefore, the observable

difference in the magnitude of the annual maximum discharges from the beginning to the end

of the fitting period is accounted for through a relatively large value of σ. However, under

Mn, the trend causes μt to increase throughout the fitting period. Thus, the time-dependant

increase in the observed discharges is represented by a changing location parameter, not a

large variance. In the context of Mn, σ does not describe the variance of the entire sample,

but rather the variance about the changing location parameter. This concept is further

illustrated in Figure 1.1B-D, where the ST distribution exhibits a variance large enough to

encompass all of the data, but the NS distributions do not. The apparent difference in σ

between the Mn and Ms has implications for inference of γ.

Thirdly, let us compare the marginal posteriors of γ between θs and θn. While the posterior

distribution of γ is relatively similar between the two models, the marginal distribution under

Mn includes more density away from the prior mode. This is due to the difference in the

value of the MLE between the two models. Under Ms, the MLE of γ is closer to the regional

estimate relative to Mn. Indeed, the MLE of γ under Mn is found in the tail of the prior

distribution. In other words, the MLE is very unlikely according to our prior knowledge.

As a consequence, the NS posterior is centered further to the right. This suggests that the

likelihood function underMn favors values of γ that are unrealistic according to past studies,

which can be explained by the relatively low value of σ. Previous studies have also shown

that σ and γ are inversely related in the LPIII distribution [Srikanthan and McMahon, 1981,

22



www.manaraa.com

γ̂
-2 -1 0 1 2

C
u
m
u
la
ti
v
e
P
ro

b
a
b
il
it
y

0

0.2

0.4

0.6

0.8

1
(B)

γ̂
-2 -1 0 1 2

D
e
n
si
ty

0

0.1

0.2

0.3

0.4

0.5

0.6
(A)

Figure 1.5: (A) Empirical density of γ̂ under the NS model (red histogram) and the ST
model (blue histogram) based on the estimates from fitting periods where α̂ was one standard
deviation away from the mean of zero (236 total). The circumflex denotes the MLE of γ and
α. (B) Empirical CDF of γ̂ under the NS model (red line) and ST model (blue line). The
CDF of γ̂ under the NS model is different from the ST model counterpart, indicating that
the likelihood function favors larger values of γ̂ (i.e. ±1.4) under the NS model. Indeed,
there is a difference between the two CDFs at the 0.05 significance level according to the
two sample Kolmogorov-Smirnov test [Massey Jr, 1951].

Nozdryn-Plotnicki and Watt, 1979], so in general low σ estimates will produce large skews.

Let us explore this further by comparing the MLE of γ under Mn and Ms for other records

tested.

Figure 1.5A shows the empirical density of γ̂ under Mn (red histogram) and Ms (blue

histogram) for estimates obtained from fitting periods with relatively large trends. Large

trends are defined as α̂ values one standard deviation away from the mean value of zero,

which were found for 236 fitting periods. Values shown in Figure 1.5 were produced by the

procedure outlined in Section 1.5.1, except here the prior on γ was completely uninformative,

or p(γ|Mj) ∼ U(−5, 5). This ensures that γ̂ is adequately approximated, since the MCMC

algorithm is no longer constrained by the regional estimate. We show how γ̂ is distributed

for records with large trends because the difference in the estimates under the two models
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generally increase with increasing values of α̂. Figure 1.5B also compares the empirical

cumulative distribution function (CDF) of γ̂ under Mn (red line) and Ms (blue line), and

reveals that there is a greater probability of large γ̂ values (i.e. ±1.4) when estimated under

Mn relative to Ms. Indeed, the difference between the CDFs under the two models is

apparent at the 0.05 significance level, according to the two sample Kolmogorov-Smirnov

test [Massey Jr, 1951]. While it appears that there is only a slightly higher probability

of large γ̂ values under Mn, extreme quantiles of the LPIII distribution are very sensitive

to γ. Previous studies suggest γ should be with within ±1.4 [Reis Jr. and Stedinger,

2005]. Therefore, estimation of θn should not be based solely on MLE in the LPIII model.

Incorporating regional information through an informative prior is an attractive methodology

to restrict the inference of γ to realistic values.

Lastly, let us discuss how the posterior samples derived from the MCMC procedure can

be used for model comparison and selection. Several common model comparison metrics

include the small sample Akaike Information Criterion (AICc), the Bayesian Information

Criterion (BIC), and the Deviance Information Criterion (DIC) [Burnham and Anderson,

2003, Spiegelhalter et al., 2002]. Under all three metrics, the goodness of fit term depends

on L(θj|X,Mj), whereas each metric applies a different penalty for model complexity. The

model which minimizes the metric value is preferred given the data in the fitting procedure,

and the difference in the metric values between competing models is used for model selection.

The differences in AICc, BIC, and DIC values between Ms and Mn for the Smith River

fitting period are 23.7, 22.5, and 22.1, respectively, each supporting Mn. Rules of thumb

for interpreting these differences are given by Burnham and Anderson [2003]. Based on the

listed differences of each model selection metric, we conclude that there is essentially no

empirical support for Ms relative to Mn given the data in the Smith River fitting period.

Similar conclusions are drawn for the other data records.

Figure 1.6 shows the differences in fit metric values between Ms and Mn for fitting periods
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Figure 1.6: Comparison of model fit between the ST and NS models. Row (A) displays
the differences in metric values for fitting periods with a detected trend (145 total), and
row (B) displays the differences for fitting periods without detected trends (1105 total).
Each column represents a different goodness of fit metric. The magnitude of the differences
represents the level of empirical support for the ST model. Values from 0-2 in each panel
indicate substantial support, values from 4-7 indicate considerably less, and values greater
than 10 indicate essentially no empirical support the for ST model [Burnham and Anderson,
2003]. These results demonstrate that the presence of a trend substantially reduces the level
of empirical support for the ST model relative to the NS model.
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with detected trends (first row) and without detected trends (second row). Based on the

differences presented in Figure 1.6, it is clear that the presence of a trend in the fitting period

causes AICc, BIC, and DIC to significantly favor Mn. Indeed, even for records without a

significant trend, fit metrics can still indicate considerably less support for Ms relative to

Mn because of the ST model’s inferior ability to maximize the likelihood function. Model

selection based solely on goodness of fit metrics may cause an analyst to sensibly select Mn

for prediction given the presence of a trend in the data. However, goodness of fit metrics

are primarily dependant on L(θj|X,Mj), even if different penalties are applied for model

complexity. Therefore, model selection rests on the ability to reproduce the historic record.

Yet, this begs the question of whether the ability to reproduce historic records is relevant

for NS model selection. When comparing multiple ST models, this paradigm is useful, since

we are not anticipating change in the historic distribution (by definition of stationarity).

At least for engineering applications, the value of NS models should be dependant on their

predictive ability, not their descriptive ability, as measured by goodness of fit. This issue of

NS model selection and validation has been raised by other authors [Renard et al., 2013],

and Burnham and Anderson [2003] note that their proposed guidelines for model selection

cannot be expected to hold if observations are not independent. In truth, the predictive

capabilities of a model can only be properly quantified using data that was not used in the

fitting procedure. In this study, the out-of-sample predictions of the competing models are

evaluated using Bayesian hypothesis testing.

1.5.2 Bayesian Hypothesis Testing

Bayesian hypothesis testing depends on Bayes factor, which summarizes the evidence given

by the data in favor of one statistical model relative to another [Kass and Raftery, 1995].

The “evidence” was introduced in Equation 1.4, but here we are interested in determining

the evidence given by the out-of-sample data, or p(X∗|Mj). The out-of-sample data, X∗,
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was previously defined in Section 1.4. In this study, the evidence represents the probability

of seeing the out-of-sample data that were actually observed under the competing models.

Consequently, the evidence is extremely useful for model selection: models with larger val-

ues of p(X∗|Mj) are statistically preferred for predicting the out-of-sample data. Model

comparison is formally accomplished using the Bayes factor

Bj,k = 2 loge

[
p(X∗|Mj)

p(X∗|Mk)

]
(1.9)

where Bj,k denotes the Bayes factor for Mj and against Mk. Here, we present a loge-scale

formulation of the Bayes factor for simpler interpretation. Positive values of Bj,k mean the

evidence supports Mj, and negative values support Mk. The Bayes factor can be viewed

as a predictive score, which measures the relative success of Mj and Mk at predicting X∗.

Interpretation of this Bayes factor formulation is given by Kass and Raftery [1995]. There are

several important properties of Bayes factors and the evidence which make them especially

useful for model selection.

First, the evidence automatically penalizes model complexity and parameter uncertainty. As

the prior density diffuses through either larger parameter uncertainty or increasing dimen-

sionality of the prior (i.e. increasing complexity), the value of the evidence will generally

decrease (Equation 1.4). However, if increasing the dimensionality of the prior also causes

the likelihood of the data to increase, the evidence could favor the more complex model. In

this light, Bayes factor offers a formal means to measure if increased model complexity is

justified by the data. Aside from favoring models with relatively concentrated priors, the

evidence will also favor models where the prior parameter knowledge agrees with the data,

which means that the likelihood function is maximized at or near the prior mode. This

property allows different parameterizations of identical models to be evaluated according to

Bayes factor. Overall, the Bayes factor is very sensitive to the choice of the prior, which

is generally considered a downside of Bayesian hypothesis testing [Kass and Raftery, 1995].
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However, sensitivity to the prior also creates opportunities for flexible applications.

Likelihood Function (Evaluation Period)

To compute Bayes factor, the evidence must be calculated under the competing models.

This requires specification of the evaluation period prior and likelihood function for Ms,

Mu, and Mn, as well as evaluating the Bayes factor integral (Equation 1.4), which is a very

challenging integration. So let us first define the likelihood function, since it is relatively

intuitive. To measure the predictive ability of the models, we must evaluate the likelihood

function at the out-of-sample data

L(θj|X∗,Mj) =
n∗∏
i=1

p(Xi|θj,Mj) (1.10)

where n∗ represents the number of observations in the evaluation data. Equation 1.10 is

identical to the likelihood function of the fitting period, except here we are evaluating the

PIII density function at the out-of-sample data. Also, j = {“s”, “n”, “u”}, since we are

evaluating the predictions of all three models. When Equation 1.10 is applied to calculate

the likelihood of θn under Mn, again there is a time dependant parameterization of the PIII

density function (Equation 1.7), and ti represents the time between the first observation of

the fitting period and the ith observation of the evaluation period. We note this to emphasize

that the trend parameter under Mn is extrapolated throughout the evaluation period.

Notice that the likelihood function distinguishes Mn from Ms and Mu, but does not dis-

tinguish Mu from Ms. Remember, under both Ms and Mu, we predict future discharges

are distributed according to a ST LPIII model. This justifies identical likelihood function

evaluations. However, the parameters of the ST LPIII model are different under Ms and

Mu, since θu was derived from the NS model. We can account for the difference between

Ms and Mu through specification of the prior.
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Prior Distributions (Evaluation Period)

In this study, our prior knowledge of the evaluation period model parameters is based on

the posterior distributions inferred from the fitting period data. Even though observations

were used to create this prior knowledge, we can still consider this a prior belief about

the evaluation period parameters, since the out-of-sample data was not used in the fitting

procedure. This technique provides informative, joint priors describing the evaluation period

model parameters, which allows for different parameterizations of the same model to be tested

according to Bayes factor. Of course, we still need to formalize this prior knowledge as a

probability distribution.

The evaluation period priors underMs, Mu andMn were defined by a multivariate Gaussian

mixture model (GMM) fit to the posterior samples of θs, θu, and θn, respectively. A

GMM was chosen to describe the evaluation period priors since GMMs can represent a

large class of distributions and approximate arbitrarily shaped densities. This property is

ideal for approximating the joint densities of the posterior samples, since no assumption is

required regarding the shape of marginal posteriors. In this study, the hyperparameters of the

GMM were inferred through the Expectation Maximization (EM) algorithm. The number

of Gaussians in the mixture, K, was determined by iteratively increasing the number of

Gaussian components until BICK − BICK+1 < 2. For more on mixture models and the EM

algorithm, please see Picard [2007].

An example of the GMM fit to the posterior samples of the Smith River fitting period is shown

in Figure 1.7. Figure 1.7 shows marginal prior densities of θn (top row), θs (middle row),

and θu (bottom row), although the fitted GMM also defines the joint density of parameter

values. Black lines represent the prior density defined by the GMM, and the histograms are

the posteriors from the Smith River fitting period. There are several important properties of

the evaluation period priors that are highlighted by Figure 1.7. First, notice the difference
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Figure 1.7: Prior parameter density for the evaluation period (black lines) under Mn (row
A),Ms (row B), andMu (row C) defined by the GMM fit to the posterior distributions of the
Smith River fitting period (red, blue, and gold historgrams). The additional complexity under
Mn is accounted for through its four dimensional prior. Increased parameter uncertainty of
μn is represented by its lower and more dispersed prior density relative to μ.
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in the prior modes under Ms compared to Mu. Under Ms, the prior favors lower values of μ

relative to the μn prior density. This is because Ms assumes no change in the location of the

distribution, so the out-of-sample μ should be similar to the stationary μ inferred from the

fitting period. Conversely, under Mu, a persistent shift in the distribution has occurred, so

predictions are best made with the updated (larger) μn. The important concept here is that

the predictions under Ms and Mu are set apart by their respective priors. In this study, the

evidence will generally favor the model where the prior mode is closest to the out-of-sample

μ and σ. However, this generalization does not consider how parameter uncertainty affects

the model comparisons.

Notice also that the posterior samples of μn are significantly more dispersed than μ. Since

samples of μn depend on the uncertain intercept and trend parameter of the linear model

(Equation 1.2), they are understandably more dispersed than μ, which simply represents

the mean of the fitting period. Figure 1.7 demonstrates the larger parameter uncertainty

under Mu, as shown by the lower and more dispersed prior probability density of μn relative

to μ. Therefore, according to Bayes factor, Mu will only be favored relative to Ms if

the increased parameter uncertainty is offset by a substantially more accurate prediction of

the out-of-sample μ and σ. Following similar reasoning, Mn will only be favored relative

to Ms and Mu if two conditions are met. First, Mn must substantially improve the the

likelihood of X∗ in order to offset the diffusion of prior density caused by the addition of the

trend parameter, α. Secondly, the trend inferred from fitting period must be similar to the

out-of-sample trend, or else p(θn|Mn) will not agree with L(θn|X∗,Mn), thus significantly

diminishing the evidence. Therefore, Bayes factor will evaluate if predictions under the

NS model improve the statistical representation of the out-of-sample data enough to justify

the additional complexity and uncertainty introduced by extrapolation of the NS trend

parameter. The last step towards implementing the proposed test requires integration of

Equation 1.4.
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Integration of the Bayes Factor Integral

Analytic evaluation of the Bayes factor integral is only possible for a narrow class of models.

In the absence of analytic solutions, the evidence is approximated using a variety of methods

which are reviewed by Kass and Raftery [1995]. In this study, Gaussian Mixture Importance

Sampling (GAME) is applied for approximation of the evidence [?]. Essentially, GMIS is

a Monte Carlo integration technique where the efficiency is improved through importance

sampling, and the importance distribution is defined by a GMM fit to a posterior sample. The

GMIS estimator was calculated for each record and model by (1) generating another posterior

sample with DREAM(ZS) using the evaluation period likelihood function and priors defined

in Section 1.5.2, (2) fitting a GMM to the second generated sample using the EM algorithm,

and (3) applying the standard importance sampling integration strategy presented by Kass

and Raftery [1995] using the fitted GMM as the importance distribution. The strength of

the GMIS estimator is that it is free of theoretical assumptions regarding the shape of the

posterior, and it is computationally tractable through use of the importance distribution.

1.6 Results: Evaluation of Predictive Ability

Let us begin by revealing the evaluation period of the Smith River Record. Figure 1.8 shows

the data in the full Smith River record (Figure 1.8A), as well as predictions derived from the

maximum a posteriori (MAP) parameter estimates compared to the out-of-sample density

(Figure 1.8B-D). Undeniably, the trend that was detected in the fitting period did not persist

in the evaluation period. Thus, predictions made under both Mn and Mu drastically over-

estimate the out-of-sample μ. Bayes factor reflects these poor predictions by very strongly

supporting Ms relative to both Mn and Mu (values given in Figure 1.8C, interpretation

based on Kass and Raftery [1995]). Under Ms, the trend that occurred throughout the

fitting period was adequately represented through a large variance parameter, reflecting the
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Figure 1.8: (A) The MAP estimate of location parameters under Ms (blue line), Mu (gold
line), and Mn (red line) shown over the full record length (black line). The colored shading
represents the respective 95% credible intervals of the location parameters. (B - D) Pre-
dictions of out-of-sample density under Ms (blue line), Mu (gold line), and Mn (red line)
derived from the MAP parameter estimate. The black histograms show the empirical den-
sity in the evaluation period. For the Smith River record, Ms most accurately predicted the
out-of-sample data, which is reflected by Bn,s and Bu,s shown in (C).

variability of the hydrologic system. The apparent increase in discharge magnitude from

1932 to 1972 could be considered long term persistence and not a significant “trend”, or

the increase could be considered a significant trend which simply did not persist throughout

the prediction period. A proper physical understanding of the relationship between clima-

tology, land use, and flood discharges in the Smith River watershed is needed to elaborate

further. Indeed, the detection of a trend alone offers little insight towards persistence, and

the significance of detected trends is particularly uncertain for hydroclimatic data because

dependance structures are poorly understood [Cohn and Lins, 2005, Lins and Cohn, 2011].

This point is not only supported by previous studies and Smith River watershed, but also

by the results of our evaluation for other records tested.

Figure 1.9 summarizes the Bayes factor results for all records tested (1250 total). The pie

charts display the Bayes factor value as a percentage of records tested. The columns compare
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Figure 1.9: Bayes factor value as a percentage of all records tested (1250 Total). (A) Bayes
factor for Mn and against Ms. (B) Bayes factor for Mu and against Ms. (C) Bayes factor
for Mn and against Mu. Yellow to red values support Mj, which is Mn in (A and C),
and Mu in (B). Green to blue colors support Mk, which is Ms in (A and B) and Mu in
(C). Results in (A) show that the evidence supports predictions under Ms relative to Mn

for about 70% of records tested, with 40% of records exhibiting at least positive evidence
for Ms. Results in (B) show that predictions under Ms are also preferred relative to Mu,
except here the majority of evidence only weakly supports Ms. Interpretation of the Bayes
factor values is based on Kass and Raftery [1995].
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the evidence between different models, or Bayes factor forMn and againstMs (Figure 1.9A),

for Mu and against Ms (Figure 1.9B), and for Mn and against Mu (Figure 1.9C). For

example, blue to green colors in Figure 1.9A-B represent records where the evidence favors

Ms for prediction, whereas yellow to red colors in Figure 1.9A,C favor Mn for prediction.

Interpretation of Bayes factor shown in the Figure 1.9 legend is based on Kass and Raftery

[1995]. Several important results are highlighted by examining the Bayes factor results over

all records tested. First, Figure 1.9A shows that evidence favors Ms relative to Mn for

roughly 70% of all records tested, with 40% of records exhibiting at least positive evidence

towards Ms. This means that the ST model was a better predictor of the out-of-sample

data relative to the NS model extrapolations for about 70% of records tested. Bayes factor

between Ms and Mu yield similar results (Figure 1.9B), except here the majority of tests

offer only weak evidence towardsMs for prediction. Secondly, notice also that the evidence is

not strongly in favor of any competing model when we examine the record pool as a whole,

with the majority of the evidence falling within the weak to positive range. This is not

surprising, since 88% of the records tested do not exhibit a statistically significant trend in

the fitting period. Therefore, predictions under both Mn and Mu will be similar to Ms for

most records. When models produce similar representations of data, Bayes factor naturally

favors the simplest, so it is not surprising that the ST model is the apparent favorite for

prediction over all records tested. However, this result does raise an important point: Ms,

or predictions of flood discharges using a ST model, should remain the default technique.

The majority of flood records in the United States do not exhibit a statistically detectable

trend, and therefore the trend parameter of the NS model is simply a nuisance parameter

in most situations. Now, let us examine records where NS and uST model predictions are

substantially different from the ST model.

Figure 1.10 summarizes the results for subsets of the record pool with detected trends in

the fitting period. The subsets shown in Figure 1.10 include records with a detected trend

in the fitting period and DIC significantly favoring the NS model, or DICs − DICn > 2
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Figure 1.10: Bayes factor value as a percentage of records with detected trends in the fitting
period and (A) DIC significantly favoring Mn (123 total), (B) discharges affected by land
use changes, regulation, or diversion (34 total), (C) trend also detected using full record
length (72 total). The columns compare the evidence between competing models in the
same manner as Figure 1.9. (A) Reveals that the presence of a trend and DIC favoring the
NS model does not improve the relative success of Mn compared to all records tested in
Figure 1.9. (B) Shows that Mu is strongly preferred for prediction relative to Ms and Mn

if a trend is accompanied by physical watershed changes.

36



www.manaraa.com

(top row). The middle row shows the results for records with detected trends and discharges

affected by land use changes, regulation, or diversion. The bottom row shows records where a

trend was detected in the fitting period and full record length. Again, the columns compare

the competing models. First, let us discuss records where trends were accompanied by

fit metrics favoring the NS model (Figure 1.10A). Here, the statistical metrics determined

from the fitting period suggest that the ST assumption is violated and the NS model is a

preferred alternative. Despite these metrics, Figure 1.10A shows Ms is strongly preferred for

prediction given records of this category. Bayes factor between Ms and Mn shows that the

evidence is in favor of Ms for roughly 75% of these trending records. Moreover, about 40%

exhibit at least strong evidence in favor of Ms. Remarkably, comparison between Figure

1.9A and Figure 1.10A illustrates that Mn is less preferred relative to Ms when a trend is

detected and goodness of fit favors the NS model. Similarly, the evidence favors Ms relative

to Mu for these records, although Mu did perform better than Mn. This result confirms our

earlier assertion that a statistically significant trend offers little insight towards persistence,

and therefore little insight towards the predictive ability of the NS model. Furthermore,

metrics of model fit measure the probability of reproducing the historic record, which is not

related to trend persistence. To illustrate this important point further, Figure 1.11 shows the

predictions under the three models compared to the data in the full record, given a trend and

fit metrics favoring Mn. Indeed, trends in the shown fitting periods are visually apparent

and statistically significant, yet both Mn and Mu are poor predictors of the second half of

the record. Thus, additional criteria are needed to confidently and reliably select NS models

for prediction. Let us now examine records where trends were accompanied by indications

of persistent change.

Figure 1.10B summarizes the results for trending fitting periods where anthropogenic influ-

ences were known to affect discharges. Records in Figure 1.10B were affected by upstream

regulation, diversion, land use changes, or channelization during the fitting period. Again,

we rely on USGS data flagging to find influenced records (Section 1.4). Only 34 records
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Figure 1.11: The MAP estimate of location parameters under Ms (blue line), Mu (gold
line), and Mn (red line) shown over the full data record (black line). The colored shading
represents the respective 90% credible intervals of the location parameters, and the black
cross denotes the end of the fitting period. The Bayes factor values are shown in the text
boxes. Records (A-F) belong to category (A) of Figure 1.10, i.e. they exhibit a significant
trend in the fitting period and DIC favors the NS model.
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tested meet this criteria, primarily because the first half of USGS records rarely contain

data flags and significant trends. For these records, both Mu and Mn are preferred rela-

tive to Ms. Notably, the evidence is very strongly in favor of Mu relative to Ms for more

than a third of the records in Figure 1.10B, with 50% of records exhibiting at least strong

evidence for Mu. The relative success of the predictions derived from the NS model can

be attributed to the permanent nature of anthropogenic watershed changes. Here, we know

the cause of the observed trend will persist without intervention, so it is much more likely

for NS and uST predictions to be successful. Figure 1.12 shows successful predictions under

Mu relative to Ms for selected records in Figure 1.10B. It is very important to note that

Mn was preferred relative to Mu for only 2 of the 34 records in Figure 1.10B, and still the

evidence only weakly supported Mn. Thus, for records with a detected trend in the fitting

period likely caused by anthropogenic influences, the uST model is preferred for prediction.

This means that extrapolation of inferred NS model parameters is almost never preferred,

even when the physical cause of the observed trend is known to be persistent. We emphasize

this point through examination of one more sub-set of the record pool.

Figure 1.10C summarizes the results for records where the trend detected in the fitting period

was also detected using the full record length. In other words, the monotonic trend detected

in the fitting period persists in the evaluation period, although not necessarily at the same

rate. In total, 72 records meet this criteria. Again, both Mu and Mn are preferred relative

to Ms. Figure 1.10C also shows that Mn only significantly improves predictions relative

to Mu for about 10% of the records with an observed trend in the fitting period and full

record length. In context of Bayes factor, this means the statistical representation of the

out-of-sample data is rarely sufficiently improved to justify the additional complexity and

uncertainty associated with the NS model extrapolations. Figure 1.12E-F strongly illustrates

this result. For these records, the extrapolations under Mn match the prediction period data

relatively well compared to predictions under Mu, which appear to be biased-low. However,

Bayes factor only weakly supports Mn relative to Mu in Figure 1.12E, and strongly supports
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Figure 1.12: The MAP estimate of location parameters under Ms (blue line), Mu (gold
line), and Mn (red line) shown over the full data record (black line). The colored shading
represents the respective 90% credible intervals of the location parameters, and the black
cross denotes the end of the fitting period. The Bayes factor values are shown in the text
boxes. Records (A-F) belong to category (B) of Figure 1.10, i.e. they exhibit a significant
trend in the fitting period and discharges are affected by land use changes or channelization
(Flag C), upstream regulation, or diversion (Flag 6).
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Mu relative to Mn in Figure 1.12F. Although this outcome appears odd, the prediction

period μ is well within the 90% credible intervals under Mu. Therefore, an out-of-sample

trend could be accounted for by making predictions with a conservative value of μ selected

from within the uncertainty bounds under Mu, and this approach is likely preferred relative

to extrapolations of an estimated trend under Mn. Appropriate quantiles of uST μ that are

useful for prediction in the case of an out-of-sample (future) trend could be recommend via

simulation in future studies. While often overlooked, the ST assumption appears to have

some utility even in the context of NS [Matalas, 2012]. Before stating conclusions, let us

discuss the implications and limitations of these results.

1.7 Discussion

Results from this study show that the extrapolation of parameter trends in the tested NS

model does not significantly improve prediction, even when the observed trend persists into

the future. However, results also show that extrapolation is not necessary to improve pre-

dictions relative to the traditional ST approach. The uST model, derived from the most

recent in-sample NS model parameters, is preferred for prediction when a detected trend

can be attributed to physical watershed changes (see Viglione et al. [2016] and references

therein for recent NS attribution methods). Other authors have emphasized the importance

of considering NS when the causes are well understood [Lins and Cohn, 2011], and Vogel

et al. [2011] stressed that much greater attention should be given to anthropogenically in-

fluenced watersheds. Yet, in the United States, there are no federal guidelines for FFA in

watersheds where documented physical alterations have changed the local hydrology. Using

NS models to update ST distributions is an attractive approach for the statistical treatment

of these watersheds. Predictions under the uST distribution only assume that there has been

a persistent change in the distribution of flood discharges, and our results show that even if

41



www.manaraa.com

the distribution continues to change, the uST distribution is likely preferred relative to ex-

trapolations of the NS model parameters conditioned on time. Also, by making predictions

within the ST paradigm, the concepts of return period and risk do not have to be extended

to a fully NS framework for the design of hydraulic structures and hazard mapping. Until re-

search shows how our prediction of flood peak distributions can be significantly improved by

the extrapolation of NS model trend parameters, the ST assumption still holds for planning

and design [Montanari and Koutsoyiannis, 2014].

For illustrative purposes, Figure 1.13B shows the return periods derived from the quantiles

of the uST LPIII distribution using the full Whiteoak Bayou record near Houston, Texas

for parameter inference (Figure 1.13A). The uncertainty in the predicted 100-year discharge

(q 99) is also shown (Figure 1.13C), demonstrating the significant uncertainty in the esti-

mate and the advantage of the Bayesian approach for parameter inference. We provide a

MATLAB R© program in the supporting information which can be used for inference of the

uST distribution parameters from complete stream flow records, but we must emphasize

several limitations. First, the Bayesian procedure applied herein measured the relative suc-

cess of predicting the overall out-of-sample distribution, and not the precision of extreme

quantiles. While the Bayesian approach is particularly useful for assessing the justified level

of model complexity, traditional statistical techniques are more appropriate for testing the

accuracy of specific quantiles. Under the traditional or frequentist approach, simulation is

used to evaluate alternative quantile estimators in terms of bias and variance with respect

to design flood estimates (see Hosking and Wallis [1997], Section 6.4 for a detailed example).

Therefore, the results show that the uST model is most appropriate among the tested models

when NS behavior is obvious, but the uST model does not necessarily predict q 99 accurately,

for example. Future studies could quantify the error in uST predictions of extreme quantiles

through Monte Carlo simulation, similar to those conducted by Yu et al. [2015]. Secondly,

although the uST model is statistically preferred for prediction relative to NS extrapolations,

this result ignores the flood damages associated with under prediction. If we considered the
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Figure 1.13: (A) The MAP estimate of the NS location parameter and 95% credible interval
(red line and shading) inferred from the full record length (black line), shown outside of the
log-space. The black cross denotes the location of the uST distribution. (B) Return level
vs. return period plot derived from the uST distribution. The solid black line represents the
MAP estimate of each return level, and the dashed black lines represent the 95% credible
interval. The density of the return level estimates is shown on the colorbar, which are readily
available from the posterior sample of θu. (C) Distribution of the q 99 estimates (or 100 year
return level) under the uST model.
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losses associated with exceedances of design flood estimates, a more conservative prediction

derived from the NS model extrapolations could be warranted, despite the additional com-

plexity and uncertainty. Indeed, if an observed trend continues, it is unlikely for any derived

uncertainty intervals of the uST quantiles to be accurate over a long time period (i.e. greater

than 40 years). Therefore, we do not recommend basing design or insurance products on

the return periods derived from the uST quantiles, but they can be used for evaluation of

present flood risk in urbanizing or significantly altered catchments. While our results show

that extrapolation of NS model parameters is not a statistically preferred alternative, this

conclusion is somewhat limited to the tested NS model.

The primary limitation of this study is that only one NS model was tested for prediction.

The tested NS LPIII model has notable advantages and disadvantages. From a practical

point of view, modeling non-stationarity in the LPIII model is advantageous because of

its widespread use in the United States and Australia for FFA. The LPIII distribution

will continue to be utilized in the United States moving forward, since the forthcoming

update to Hydrologic Bulletin 17B will not change the recommended distribution for FFA

[Lamontagne et al., 2013]. Working with the LPIII distribution allows us to take advantage

of the substantial prior knowledge of the distribution parameters. From a modeling point

of view, the main advantage of the tested NS LPIII model is that changes in the mean

and standard deviation of Q are captured with one additional trend parameter. This is a

desirable property, since hydrologic non-stationarity would likely result in changes to both

the location and scale [Stedinger and Griffis, 2011a]. Therefore, the tested NS model is

physically realistic and relatively simple. However, the linear trend in the log-mean equates to

an exponential trend in the mean of Q. Therefore, extrapolation of the NS model parameters

leads to non-linear predictions of the changing mean. This is not desirable for out-of-sample

predictions, which is reflected by the relative failure of NS extrapolations. It is possible

that NS predictions would improve through extrapolation of a truly linear NS model. We

also note that the sample size available for NS model parameter inference was particularly
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limited. Excluding half the available data was necessary for predictive analysis, but the

annual maxima sampling method is wasteful of data. Sample size can be increased using a

peak over threshold approach for extreme value sampling [Renard et al., 2006b, Kyselỳ et al.,

2010], or taking advantage of regional trend information [Cunderlik and Burn, 2003, Renard

et al., 2006a]. Both techniques would likely result in improved parameter inference and more

reliable trend detection. Short term trends and cycles that appear significant could also be

avoided if the NS model incorporates additional information on historic floods [Reis Jr. and

Stedinger, 2005, Salinas et al., 2016]. Another limitation of the tested model is that changes

in the distribution of flood discharges are conditioned upon time.

By extrapolating a NS model for prediction using time as a covariate, we assume that the

change in the distribution of flood discharges will continue at the same rate we have esti-

mated from a limited sample. Furthermore, we assume a change in the distribution without

a physical understanding of what caused the change. Extrapolations are therefore prone

to failure since we have no insight towards the persistence of observed trends. Other au-

thors have discussed the problems associated with NS trend extrapolation [Koutsoyiannis

and Montanari, 2015], but the dominance of NS models in terms of traditional model selec-

tion metrics can be very misleading and actually cloud our judgement. The findings of this

study largely support the claim by Merz et al. [2014] “Although statistical approaches have

played and will play an important role, they have to be complemented by the search for the

causal mechanisms and dominant processes in the atmosphere, catchment and river system

that leave their fingerprints on flood characteristics”. An understanding of the dominant

mechanisms responsible for changes in flood discharge distributions allows for the develop-

ment of physically based covariates [Hall et al., 2014, Delgado et al., 2014, Steinschneider

and Lall, 2015, Machado et al., 2015, Lima et al., 2015]. Under this approach, the historic

record is used to develop a relationship between the distribution and a physical process, such

as atmospheric circulation patterns. Future changes to the distribution are then based on

the inferred relationship and the prevalence of the physical process under general circula-
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tion model (GCM) based climate change projections. Here, the GCM is applied to provide

insight towards the trend of important flood generating mechanisms, rather than to predict

local and extreme precipitation events. For example, Šraj et al. [2016] present a simple NS

model where changes in the frequency distribution are conditioned on annual precipitation.

Design discharges can then be estimated for different projected values of annual precipitation

that occur over the project lifespan. Indeed, physically based NS modeling is a promising

direction towards meaningful extrapolation of NS model trend parameters, but continued

research aimed at identifying important climate related signals in flood records is needed

[Archfield et al., 2016]. We note that extrapolation of inferred trends should only be consid-

ered when there is strong evidence that the observed trend is likely to continue in the future.

Examples include frequency analysis of temperature [Cheng et al., 2015], sea level extremes

[Mudersbach and Jensen, 2010], or FFA in a watershed where urbanization is expected to

continue in the future.

1.8 Conclusions and Recommendations

Results show that the ST model is preferred for out-of-sample prediction, overall. Even

for records with a detected trend in the fitting period and goodness of fit metrics signifi-

cantly favoring the NS model, the ST predictions are preferred relative to the uST and NS

predictions. Therefore, the Mann-Kendall trend test applied to peak discharges and good-

ness of fit metrics alone are not sufficient to warrant the selection of a NS or uST model

for prediction. This conclusion has been stressed by other authors [Renard et al., 2013,

Serinaldi and Kilsby, 2015a], and our results demonstrate empirical evidence towards this

important assertion. For records with a detected trend and known physical watershed alter-

ations (specifically USGS data flags 5/6 or C), the uST distribution is strongly preferred for

prediction over the average evaluation period length of 40 years. Extrapolation of the NS
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model parameters is rarely preferred for prediction, even for records with a detected trend

in the fitting period and full record. All things considered, we recommend the uST LPIII

distribution for evaluation of current flood flood risk in watersheds with a detectable trend in

Q that can be attributed to persistent physical changes. At this time, we do not recommend

basing design or insurance products on predictions under the uST distribution because (1)

the accuracy of extreme quantiles has not been comprehensively evaluated and (2) if the

trend continues it is unlikely for any derived confidence bounds to encompass true quantiles

over a long time period. We also recommend a fully Bayesian approach for parameter es-

timation so that (1) the bias of the NS skew estimate can be reduced with an informative

prior, and (2) parameter uncertainty is explicitly characterized. The supporting information

provides a MATLAB R© program based on the methods outlined in Section 1.5.1 (applied to

full record length) for inference of the ST, uST, and NS LPIII parameters. The program also

includes basic post-processing options. In conclusion, we recommend that future research

should focus on the evaluation of predictions derived from promising NS models and the

development of physically based covariates. Many stochastic models have been proposed,

but we need to learn how to use them for prediction. Undoubtedly, practitioners are limited

to standard statistical methods in the absence of accepted alternatives.
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Chapter 2

Using sea level rise projections for

engineering design and planning

2.1 Chapter Summary

Policy makers are increasingly requiring engineers to consider sea level rise projections in

the planning and design of coastal infrastructure. However, using sea level rise projections is

complicated by many factors including 1) speculation about the likelihood of future emission

scenarios, 2) the uncertainty in sea level rise projections for a given emission scenario, and

3) the challenge of translating projections of mean sea level into traditional design concepts

such as return periods and risk. In this paper, we present methodology for addressing these

three challenges for coastal infrastructure planning and engineering design. First, we present

an approach for using a combination of extreme value analysis and sea level rise projections

to estimate 1) the risk of an exceedance event over the design life of a proposed project and

2) the expected waiting time until water levels exceed a specified elevation. We introduce a

“speculation” index to quantify the sensitivity of risk and waiting time estimates to weights
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assigned to future emission scenarios. The speculation index is used to derive a design water

level for critical infrastructure and an objective planning and design horizon for regular

decisions. We illustrate the methodology using historic data and sea level rise projections

for Los Angeles, California. Results show that waiting time and risk estimates based on sea

level rise projections are remarkably uncertain and speculative over long time horizons (i.e.,

late 21st century and beyond). In Los Angeles, there is a brief time horizon (prior to 2055)

where risk and waiting time estimates are insensitive to speculation and have relatively low

variance. For longer time horizons, estimates of risk and waiting times can only be considered

objective for extremely high water levels. The results imply that risk-based and cost-effective

design is only possible over a short time horizon, and that most long-term decisions should

be adaptable to incorporate new information.

2.2 Introduction

The widespread perception of changing environmental conditions severely undermines tradi-

tional design concepts in the field of Civil Engineering. The average recurrence intervals of

extreme conditions (or return periods) are estimated based on the assumption that historic

data samples reasonably approximate future conditions. Estimates of risk, or the probability

of an exceedance event during the design lifespan of a structure, are also based on historic

data. In more formal terms, estimates of fundamental design parameters such as return

periods and risk of extreme events rely on the stationary assumption, or the assumption

that the statistical properties of the historic data record (i.e. mean, standard deviation)

are time-invariant. The stationary assumption is very useful because it allows engineers to

make data-driven design decisions based upon the information content of the historic record

alone. However, climate change’s anticipated impacts on the probabilities of extreme events

[Hartmann et al., 2013, Rhein et al., 2013] question the validity of the stationary assumption
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and the common practice of relying on historic data for engineering design.

In the field of hydrology, there is a debate regarding the “successor” to the stationary as-

sumption for estimating design flow rates, e.g., 100 year discharge estimates commonly used

for the design of bridges and mapping floodplains. The climate modeling community tends

to argue for incorporating general circulation model (GCM) projections into hydrologic de-

sign and risk assessment [Milly et al., 2008, 2015], applied statisticians often present more

complex stochastic models that explicitly characterize changing probabilities [Katz, 2013,

Cheng et al., 2014b, Renard et al., 2006b], whereas several researchers have argued and

demonstrated that more complex approaches increase predictive uncertainty and therefore

the stationary assumption should be preferred despite its limitations [Stedinger and Griffis,

2011b, Luke et al., 2017, Serinaldi and Kilsby, 2015b]. In engineering practice, the most

commonly adopted approach to account for the so-called “stationarity issue” in design flows

is to multiply estimates derived from the traditional methods by a safety factor to account

for the uncertainty in future climate [Madsen et al., 2013]. Turning our attention now to

coastal processes, the stationarity issue is different and it is unlikely to be resolved with a

safety factor approach.

There have already been documented changes in the magnitude of extreme sea level events

[Menéndez and Woodworth, 2010], unlike changes in hydrologic (riverine) extremes that are

yet to be observed [Villarini et al., 2009a]. Most tide gages contain trends in extremes due to

mean sea level rise, and there is widespread consensus that rates of sea level rise are likely to

accelerate throughout the 21st century [Church et al., 2013]. These factors make it difficult

to justify infrastructure design and planning based on historic data alone, since historic

records do not contain information on the anticipated acceleration of sea level rise. Moreover,

projections of mean sea level throughout the 21st century and beyond are widely available

and relatively well developed compared to GCM projections of precipitation at regional scales

[Kopp et al., 2014, Flato et al., 2013]. From a practical point of view, academic arguments
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for or against using sea level rise projections in engineering are becoming irrelevant: many

agencies now require projections to be used in design and planning [Engineers Australia,

2013, California Coastal Commission, 2015, USACE, 2013]. So, what’s problem? Why can’t

engineers simply adopt projections of mean sea level for design purposes? There are several

key issues which create barriers for making sea level rise projections useful for engineering.

First and foremost, modern projections of mean sea level all result from hypothetical emission

scenarios adopted by the Intergovernmental Panel on Climate Change (IPPC)[Van Vuuren

et al., 2011a]. Despite recent advances that assign probability distributions to sea level

rise projections [Kopp et al., 2014], each sea level rise distribution is conditioned upon an

emission scenario. Moreover, the IPCC refrains from assigning relative likelihoods to the

emission scenarios [Van Vuuren et al., 2011a], making them very difficult to use for engineer-

ing purposes. For example, there is no distinction between the likelihood of representative

concentration pathway (RCP) 8.5, which depends on socioeconomic narratives where coal

dominates the market share of primary energy supply after 2040 [Ritchie and Dowlatabadi,

2017], compared to RCP 2.6, which is attainable if society aggressively adopts carbon capture

technology [Van Vuuren et al., 2011b]. Since sea level rise projections under the different

emission scenarios vary considerably after 2050 [Kopp et al., 2014], the choice of RCP scenario

becomes important in the design process. Choosing an RCP for design without information

on the likelihood of these scenarios changes a relatively objective design process founded in

extreme value analysis to a highly subjective scenario planning exercise that is dependant

upon the selected (or prescribed) emission scenario. This problem clearly complicates design

and planning in coastal areas.

Secondly, within a given emission scenario there is a considerably wide range of sea level rise

projections. For example, Kopp et al. [2014] project with 95% confidence between -2 cm and

85 cm of relative sea level rise for Crescent City, CA by the year 2100 under RCP scenario

4.5. This implies that there could be negative sea level rise relative to land north of Cape
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Mendocino, or a rise of 85 cm (2.8 ft) by the year 2100. Variance in models’ predictions of

thermal expansion, glacier mass loss, and ice-sheet mass account for the majority of uncer-

tainty in sea level rise projections [Church et al., 2013]. Indeed, the additional uncertainty

introduced by model projections is new for engineers: uncertainty associated with traditional

estimates of risk and return periods is attributable to limited sample size and the selected

frequency distribution. These uncertainties on their own are already significant [Stedinger

and Griffis, 2011b].

The last issue addressed in this paper is the challenge of translating mean sea level rise

projections into corresponding estimates of the return periods and risk of extreme water

levels. The problem is that sea level rise projections do not directly express concepts that

have traditionally provided the basis for design decisions. Projected changes in mean sea

level are often added to the present day extreme value distribution to estimate future risk,

e.g., the current 100 year water level plus projected mean sea level rise is used to assess

vulnerability [Mudersbach and Jensen, 2010]. However, this approach does not provide in-

formation describing 1) expected waiting time until an exceedance event, which is analogous

to a return period and can be useful for evaluating a project’s lifespan, or 2) the probability

of an exceedance event throughout a design life, which can be used to understand a project’s

risk. By using non-stationary extreme value analysis, or assuming the statistical properties

of the extreme value distribution vary with mean sea level, it is possible to estimate both of

these fundamental design metrics given different sea level rise trajectories.

The purpose of this paper is to present methodology for engineering design that addresses

the three issues outlined above: subjective likelihood of emission scenarios, highly uncertain

sea level rise projections, and translating projections into traditional design concepts. We

emphasize uncertainty analysis of waiting time and risk estimates to provide guidance on

the utility of these metrics in the context of sea level rise projections. The remainder of

the paper is organized as follows. First, we briefly review the concepts of return periods
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and risk and show how they can be extended to a non-stationary framework that assumes

time-variant probabilities (Section 2.3.1). Then we present a non-stationary (NS) model

that can be used to synthesize extreme value analysis with projections of mean sea level

(Section 2.3.2). After presenting the NS model, we introduce a Monte Carlo experiment

that is used to quantify uncertainty in expected waiting time and risk estimates resulting

from uncertain emission scenarios, sea level rise projections, and limited historic sample

size (Section 2.3.3-2.3.4). Our strategy for assigning probabilities to the RCPs is explained

in Section 2.3.4, along with a brief overview of the emission scenarios. We then introduce

the “speculation” index, which measures the sensitivity of expected waiting time and risk

estimates to weights assigned to future emission scenarios (Section 2.3.6). In sections 2.4,

we present the results of the methodology applied to the Los Angeles gage and demonstrate

how the speculation index can be used to derive a critical infrastructure design water level

and an objective planning and design horizon. We discuss the implication of these results

in Section 2.5 and summarize and conclude the paper in Section 2.6. Appendix B includes

details on the Bayesian methods used for parameter inference.

2.3 Methods

2.3.1 Return Periods and Risk of Non-stationary Water Levels

There are several definitions of return periods in the literature [Olsen et al., 1998, Cooley,

2013], and herein we adopt the expected waiting time definition because it is easier to

interpret for design life applications. In this paper, the return period T (z) represents the

expected waiting time (in years) until water levels exceed elevation z. The term “expected” is

used in a statistical context, i.e., the expected waiting time is the average waiting time until

an exceedance of z. For simplicity and consistency with standard frequency analysis of tide
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gages in the U.S. [e.g., Zervas, 2013b], we apply frequency analysis to annual maxima water

levels throughout this paper. By assuming 1) annual maxima water levels are independent

events and 2) the probability of an exceedance event remains constant, or the distribution

of annual maxima is stationary, calculating T (z) is simple [Gumbel, 1941]

T (z) =
1

1− F (z)
(2.1)

where F (z) is the cumulative distribution function of random variable Z, which defines the

annual probability that Z is less than or equal to water level z, or F (z) = P(Z ≤ z). Notice

that the expected waiting time until an exceedance of level z is simply the inverse of the

annual exceedance probability under the independence and stationary assumption.

For estimating risk, we use the interpretation presented by Salas and Obeysekera [2013].

Herein, risk R(z, t) is defined as the probability of an exceedance of design level z before

or during the last year of the design lifespan t. Under this definition of risk, R(z, t) is

the probability of overtopping before the end of the design life. By applying the same

independence and stationary assumption, calculating R(z, t) is also straightforward [Salas

and Obeysekera, 2013]:

R(z, t) = 1− F (z)t (2.2)

Notice that under the stationary assumption, both T (z) and R(z, t) are defined by a constant

distribution function F (z). The limitation of this assumption in the context of sea level rise

is that F (z) will change as mean sea level increases, and therefore T (z) and R(z, t) are not

meaningful over long time horizons where we anticipate significant changes to F (z).

We now drop the stationary assumption to allow F (z) to vary with time, and in this paper

F (z) varies as a function of sea level rise trajectory. The expected waiting time for water

levels to exceed level z when we assume the probability of exceedance changes with respect
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to time is given by Olsen et al. [1998], Cooley [2013], Salas and Obeysekera [2013]:

T (z) = 1 +
∞∑
y=1

y∏
i=1

Fi(z) (2.3)

where Fi(z) is the time-varying distribution function of z, and the variables y and i are both

indices of years. It is important to note that the expected waiting time until an exceedance

of level z is infinite for cases when Fi(z) approaches unity, or the exceedance probability of z

goes to zero. In the context of extreme ocean levels, this situation occurs when projections

of mean sea level predict a decrease in sea levels relative to land. On the other hand,

when projections predict and increase in sea level relative to land, Fi(z) goes to zero as

the exceedance probability of z approaches unity. In this case, the infinite sum in Equation

2.3 can be stopped in the year y = ymax, or the year when Fi(z) equals zero. When Fi(z)

approaches zero, T (z) converges to a finite value that represents the average waiting time

until exceeding z. Approximations of Equation 2.3 are also given by Cooley [2013]. The risk

of water levels exceeding level z before the end of design life t is easier to interpret under

non-stationary conditions and is also given by Salas and Obeysekera [2013]:

R(z, t) = 1−
t∏

i=1

Fi(z) (2.4)

Notice that Equation 2.4 is a fairly straightforward extension of Equation 2.1 to allow F (z)

to vary with time.

The important consequence of calculating T (z) and R(z, t) as a function of non-sationary

(time-varying) probabilities is that T (z) and R(z, t) are now relative to a specific starting

year. For example, the expected waiting time until an exceedance event starting from a

reference year of 2000 will be different from the expected waiting time from 2050. This

issue can be addressed by adding T (z) to the reference year, or the year corresponding to

t = 0, so that T (z) is converted to a specific year when an exceedance event is expected.
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The authors consider this consequence an advantage; non-stationary T (z) can be used to

estimate when sea level rise is expected to cause water levels to exceed proposed or existing

infrastructure. Likewise, non-stationary R(z, t) can be used to estimate the probability sea

levels will exceed the elevation of existing infrastructure by year t. To determine R(z, t) and

T (z) under non-stationary conditions, the time varying distribution function Fi(z) must be

defined. In this paper, we use non-stationary extreme value analysis (NEVA) to define Fi(z).

2.3.2 Modeling Water Levels with Non-stationary Extreme Value

Analysis

NEVA is an important extension of stationary extreme value analysis which allows the dis-

tribution of extremes to change. The change in the distribution is modeled by expressing one

or more of the distribution’s parameters as a function of time or another external covariate

[Coles, 2001, AghaKouchak et al., 2013]. In this study, we use a non-stationary, generalized

extreme value (NS-GEV) distribution to define the time dependant distribution function

Fi(z):

Z ∼ GEV(μi, σ, ξ) (2.5)

where the random variable Z is the annual maximum ocean level, and σ and ξ denote the

scale and shape parameter of the GEV distribution, respectively. The time-variant location

parameter μi is formulated as a function of changes in mean sea level

μi = ΔMSLi + μo (2.6)

where ΔMSLi is the change in mean sea level from a year 2000 baseline to year i, and μo is

a constant off-set between the location of the GEV distribution and mean sea level. Notice
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that μi is the location of the GEV distribution relative to mean sea level in the year 2000,

and μo is the location parameter during the year 2000. Using changes in mean sea level

to shift the distribution of annual maxima water levels allows us to couple extreme value

analysis with sea level rise projections [Obeysekera and Park, 2012, Hunter, 2010].

According to Equations 2.5 and 2.6, we assume that ΔMSLi changes the location of the

extreme ocean level distribution but does not cause the scale or tail behavior of the distri-

bution to change. Physically, this means that we assume changes in mean sea level increases

extreme ocean levels on average, but the magnitude of storm surges (which governs the scale

and shape parameters) will not change. This assumption is supported by tide gage records,

which demonstrate that changes in extreme ocean levels are primarily attributed to changes

in mean sea level, and that relatively few tide gages worldwide exhibit trends in storm surges.

It is important to note that a different model should be used if changes in surge magnitude

and frequency are detected, which has been reported for several tide gages along the gulf

coast of the US [Menéndez and Woodworth, 2010].

To illustrate the concepts presented in Sections 2.3.1 - 2.3.2, Figure 2.1 shows T (z) estimates

for extreme water levels in Southern California (CA). Figure 2.1A shows the NS-GEV model

(Equations 2.5 - 2.6) fitted to the record of annual maxima ocean levels from the Los Angeles,

CA tide gage. The parameter estimation procedure is included in Appendix B. Figure 2.1B

shows the projected change in mean sea level defined by the 25th percentile of the RCP 4.5

projections [Kopp et al., 2014], the corresponding change in the GEV distribution according

to the fitted model, and the water levels expected to be exceeded by 2050, 2100, and 2150.

The blue line represents ΔMSLi, which is measurable prior to 2018. We use a centered

19-year moving average to define mean sea level for consistency with the Kopp et al. [2014]

projections, which project changes in mean sea level relative to a 19-year window centered

on the year 2000. After 2018, ΔMSLi is defined by projections. The red line is the location

of the fitted NS-GEV model μi, and the red shading shows the 1st - 99th quantiles of the
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distribution. Notice that the difference between red and blue lines is μo.

The black lines are the water levels we would expect to be exceeded by 2050, 2100, and 2150

for the displayed sea level rise projection and parameterization of the NS-GEV model. Here,

return level z was determined by setting T (z) equal to the desired return periods (33, 83,

and 133 years) and solving for z using Equation 2.3. The fitted NS-GEV model is used to

define Fi(z). Notice that T (z) is relative to a starting year and can be used to determine

specific years when exceedances of different elevations are expected. Notice also that the

probability of exceeding level z increases after the expected exceedance year. This is shown

graphically in Figure 2.1B by the larger probability density (red shading) above return levels

as sea levels increase. Since exceedance probabilities increase after the expected year of the

first exceedance, T (z) is appropriate for estimating the useful design life of a structure with

elevation z (e.g. a sea wall or finished floor elevation). In other words, the protective value

of a structure with elevation z decreases significantly after T (z), because sea level rise is

expected to cause exceedance probabilities to increase indefinitely. Of course, this is based

on the assumption that projected changes in mean sea level materialize.
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Figure 2.1: A) Observed annual maximum ocean levels, ΔMSLi, and fitted NS-GEV model.
B) Projected ΔMSLi, changes to fitted NS-GEV distribution, and return levels. The black
lines are the water levels we would expect to be exceeded by 2050, 2100, and 2150 for the
given sea level rise projection and NS-GEV model fit.
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2.3.3 Uncertainty Analysis

Figure 2.1 also demonstrates that in the context of sea level rise, T (z) is a now a function of

the probabilities defined by the NS model and projections of sea level rise. These inputs to

the T (z) and R(z, t) calculations are inherently uncertain. To estimate confidence intervals

for T (z) or R(z, t) based on the uncertain inputs, we can use Monte Carlo experimentation.

Monte Carlo experiments are a broad class of algorithms that rely on random sampling

to obtain results, and in summary, Monte Carlo based algorithms usually follow a similar

pattern:

1. A domain of possible inputs is defined

2. Inputs are randomly generated from a probability distribution over the domain of

inputs

3. A computation is performed using the randomly generated inputs

4. Repeat steps 2-3

5. Aggregate results

Accordingly, using Monte Carlo experiments to estimate uncertainty in T (z) and R(z, t)

requires us to define probability distributions over the sources of uncertainty. Table 2.1

summarizes the known sources of uncertainty associated with Fi(z) and projected values of

its input variable ΔMSLi. Formal classifications of the sources of uncertainty are provided

in the parenthesis according to Kennedy and O’Hagan [2001], except here we use the term

“input variability” to classify uncertainties in model forcing variables. The colored sources

in Table 2.1 are the sources of uncertainty that we consider in the Monte Carlo experiment.

The Table 2.1 footnotes briefly describe our approach for defining distributions over these

sources of uncertainty for Monte Carlo sampling, and the following sections describe our

strategies in more detail.
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Table 2.1: Sources of uncertainty in T (z) and R(z, t) when determined using sea level rise
projections. Formal classifications of uncertainty sources are provided in parenthesis.

Extreme Value Probabilities, Fi(z)
Observed ΔMSLi (Model Input Variability)
Unknown Extreme Value Distribution (Model Inadequacy)
Limited Sample Size for Parameter Inferencea (Parameter Uncertainty)
Imperfect Measurements of Extreme Ocean Levels (Observational uncertainty)
Projected Sea Level Change, ΔMSLi

Climatic Uncertainties
Future Emissionsb (Model Input Variability)
Ice Sheet Contributionsc (Model Inadequacy and Parameter Uncertainty)
Glaciers and Ice Cap Contributions d (Model Inadequacy and Parameter Uncertainty)
Thermal Expansion Contributions e (Model Inadequacy and Parameter Uncertainty)
Non-Climatic Uncertainties
Water from Land Contributions f (Model Inadequacy and Parameter Uncertainty)
Vertical Land Movement g (Model Inadequacy and Parameter Uncertainty)

a Distribution defined by Bayesian parameter estimation (Appendix B)
b Distribution defined by emission scenario weights (Section 2.3.4)
c - g Joint distribution defined by Kopp et al. [2014]

The most straightforward source of uncertainty to define probabilistically is the parametric

uncertainty of the NS model, which results from limited sample size for parameter inference.

The parametric uncertainty is specifically the uncertainty in the estimates of μo, σ, and ξ,

which are denoted collectively as θ. To define a joint distribution of θ, we use Bayesian

inference to estimate the parameters of the NS model. Bayesian inference results in a full

distribution of parameter values conditioned on the data, or the probability of θ given the

annual maximum observations from the historic record. In this study, we implement Bayesian

parameter estimation using Markov Chain Monte Carlo simulation with the DREAM(ZS)

algorithm developed by Vrugt et al. [2009], Laloy and Vrugt [2012b]. For the sake of brevity,

we will not review Bayesian methods in this paper, however we refer the interested reader to

Cheng et al. [2014b], Luke et al. [2017], and Vrugt [2016] for applied examples and software

for implementation. In the context of this paper, Bayesian parameter estimation provides

us with a distribution of parameter values to sample from for the Monte Carlo experiment.

In Appendix B, we proved the posterior distribution of parameter values and more details
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about the parameter estimation procedure.

Notice that we do not consider the uncertainty in observed ΔMSLi, ocean level measure-

ments, or extreme value distribution selection. Uncertainties in observed ΔMSLi and ocean

level measurements both result from observational errors in water level measurements, which

are on the order of ±0.005 m for average water levels and ±0.02 m for individual measure-

ments [NOAA, 2013]. Thus, errors in computed ΔMSLi and observed water levels are

relatively small compared to the uncertainties in projected sea level rise. Regarding extreme

value model uncertainty, Arns et al. [2013] showed that probabilities defined by different

extreme value distributions are minor for long record lengths. It is therefore unlikely that

extreme value distribution selection will contribute significantly to the overall uncertainty in

light of the relatively long tidal records available for parameter inference. However, it would

be interesting to assess the sensitivity of the estimates to stochastic model selection in a

future study. Indeed, the many sources of uncertainty associated with projections of ΔMSLi

are likely to dominate in the T (z) and R(z, t) calculations.

Kopp et al. [2014] provide a probability distribution of ΔMSLi for a global network of tide

gages. The probability distribution reflects the uncertain contribution of glaciers, ice sheets,

ice caps, thermal expansion, and water from land to cumulative sea level rise (Table 2.1). The

distribution also reflects uncertainties in vertical land movement at the local tide gages, so the

local distributions of ΔMSLi describe uncertainty in sea level rise projections relative to land.

To construct the distribution over these sources of uncertainty, Kopp et al. [2014] randomly

sampled from distributions of sea level rise contributions resulting from each individual

component presented in Table 2.1. Expert elicitation was used to determine the tail of the

contributions from the Antarctic ice sheet [Bamber and Aspinall, 2013]. The aggregate of

expert elicitation and the random samples provide the full distribution of ΔMSLi at each

tide gage. The Kopp et al. [2014] distributions primarily reflect the contributions of model

and parametric uncertainty to the variation in sea level rise projections. The distributions
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do not reflect uncertainty in GCM model forcing, or the unknown emission concentrations

throughout the 21st century. The Kopp et al. [2014] probabilistic projections of sea level rise

are conditioned upon different emission scenarios.

2.3.4 Reviewing and Weighting the RCP Scenarios

Since the RCPs were developed primarily to evaluate climate change impacts resulting from

different policies, there are no probabilities or relative likelihoods explicitly attached to the

RCP scenarios [Van Vuuren et al., 2011a]. This makes them difficult to use for engineering

purposes, since the cost of design will vary with the RCP scenario and there is no guidance

from the IPCC regarding their relative likelihoods. However, it is possible to at least sub-

jectively estimate the probabilities of RCP scenarios by evaluating the likelihood of their

underlying socioeconomic conditions. In this study, we assign probabilities to the RCP

scenarios based on different interpretations of literature that assess the plausibility of the

conditions leading to the respective RCPs. Weighting RCPs based on literature interpreta-

tion is of course subjective, so we test the sensitivity of the Monte Carlo experiments to the

probabilities assigned to the RCP scenarios. The sensitivity of the Monte Carlo experiment

to RCP weights expresses the subjectivity of the resulting T (z) and R(z, t) estimates, which

we quantify in Section 2.3.6.

In this study, we limit the domain of emission scenarios to RCP 2.6, 4.5, and 8.5 because

RCP 4.5 and 6.0 lead to identical sea level rise projections [Kopp et al., 2014]. The do-

main of emission scenarios is summarized as follows: RCP 8.5 is characterized by increasing

greenhouse gas emissions over time and represents scenarios from the literature where no cli-

mate policy is enacted [Riahi et al., 2007], RCP 4.5 represents greenhouse gas stabilization

scenarios where radiative forcing is balanced after 2100 [Clarke et al., 2007], and RCP 2.6

represents scenarios that lead to very low greenhouse gas concentrations by implementing

63



www.manaraa.com

carbon capture technology and aggressive mitigation strategies [Van Vuuren et al., 2007].

The RCPs are not tied to a specific scenario that leads to the respective levels of radia-

tive forcing. However, the baseline emission scenarios are characterized by relatively strong

assumptions regarding fossil fuel usage and availability throughout the 21st century.

Baseline emission scenarios (i.e. no climate policy scenarios) generally assume compounding

growth in energy demand, reduction in the availability of oil and gas, and consequently

reliance on coal to meet the growing energy demand [Ritchie and Dowlatabadi, 2017]. Thus,

baseline emission scenarios such as RCP 8.5 assume high levels of future coal combustion.

The RCP 8.5 scenario in particular assumes an extraordinarily unlikely amount of coal

combustion. RCP 8.5 indicates a “return to coal” future where coal is poised to dominate

all energy forms by the end of the century [Ritchie and Dowlatabadi, 2017]. The “return to

coal” future is based on the assumption that as demand for energy increases, coal reserves

will expand indefinitely to meet the growing energy demand. This assumption has not

materialized thus far throughout the 21st century. Ritchie and Dowlatabadi [2017] showed

that coal reserves have declined by roughly 15% since 2000 despite rising market prices.

Moreover, the total carbon emissions necessary to reach or exceed RCP 8.5 would require

combusting 80% to 270% more coal than is presently available according to modern reserve

estimates [Ritchie and Dowlatabadi, 2018]. The combination of declining coal reserves and

the significant expansion that would be necessary to meet RCP 8.5 makes this scenario

appear very unlikely. Capellán-Pérez et al. [2016] puts the probability of exceeding RCP 8.5

at 12% based on fossil fuel resource availability, although one could argue that exceeding

RCP 8.5 is economically impossible based upon Ritchie and Dowlatabadi [2017]. Thus,

weighting the RCP scenarios using trends in coal reserves and current reserve estimates

would assign relatively low likelihood to RCP 8.5 compared to 4.5 and 2.6. Depending on

one’s perspective, an opposing weighting scheme could be argued for by analyzing intended

policies resulting from the Paris climate agreement.
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The Paris Agreement aims to keep global warming below 2o Celsius and pursue efforts to

limit warming to 1.5o Celsius. Mitigation scenarios that limit warming to 2o Celsius are

represented by RCP 2.6 [Van Vuuren et al., 2011b], so the likelihood of accomplishing the

Paris Agreement is analogous to the likelihood of RCP 2.6. Rogelj et al. [2016] analyzed na-

tional plans that describe participating nations’ intentions for addressing the climate change

challenge after 2020. The submitted plans, known as Intended Nationally Determined Con-

tributions (INDCs), imply a median warming of 2.6o - 3.1o Celsius by 2100 if implemented

successfully [Rogelj et al., 2016]. Substantial over-delivery on INDCs is required to main-

tain a chance of keeping warming below 2o Celsius and thus realizing the RCP 2.6 scenario.

Van Vuuren et al. [2011b] reports that to reach RCP 2.6, global emissions need to peak

around 2020 which is not realistic even with successful implementation of INDCs. Thus, us-

ing INDCs to estimate the likelihood of RCP scenarios would assign relatively low weights to

RCP 2.6 compared to 4.5 and 8.5. The INDCs are also “intended”, so there is no guarantee

of delivery implying that baseline (no-policy) RCPs are still plausible even considering the

submitted intentions.

Indeed, the speculative nature of determining the likelihood of future emission scenarios

was a major factor in the IPCC’s decision to not provide guidance on weighting future

warming scenarios [Schneider, 2001]. In the “probability vacuum” that followed, the most

common assumption is to assign equal probabilities to the future warming scenarios. In this

study, we acknowledge the subjectivity in weighting the RCPs by repeating the Monte Carlo

experiment with relative likelihoods based on 1) coal reserve trends and current estimates, 2)

analyses of INDCs, and 3) no preference guidance. Table 2.2 shows the weights assigned to

the RCP scenarios for the different bases used to assign probabilities. The weights based on

recent estimates of coal reserves assume that more recent data on coal availability and usage

rules out RCP 8.5, and we will refer to this assumption as the “optimistic” outlook. Weights

based on INDCs assume the national plans to limit emissions will not keep warming below

2o Celsius, so the Paris Agreement fails and RCP 2.6 is not possible. We denote weights
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Table 2.2: Probabilities assigned to RCP Scenarios based on different literature. The columns
are the different RCP Scenarios, the rows are the weighting bases and pseudonyms, and the
values in the table are the probabilities assigned to each scenario for the respective weighting
schemes.

Weighting Name, Subscript Basis RCP 2.6 RCP 4.5 RCP 8.5
Optimistic, “o” Limited Coal Reserves 0.5 0.5 0.0
Pessimistic, “p” Paris Agreement Fails 0 0.5 0.5

Neutral, “n” No Official Guidance 0.33 0.33 0.33

based on the INDC analyses as the “pessimistic” perspective. Lastly, weights based on the

no preference guidance assign equal probabilities to all scenarios, and we call this weighting

scheme “neutral”. We note that there are many more approaches for weighting the RCP

scenarios that could be justified by the literature other than those presented in Table 2.2. By

assigning probabilities of zero to the extreme scenarios of RCP 2.6 and 8.5 in the pessimistic

and optimistic outlooks, respectively, we provide distributions over the RCP domains that

approximate a limit to the many possible interpretations of the literature. We could not find

strong justifications for ruling out the middle scenario, RCP 4.5. With probabilities defined

for emission scenarios, sea level trajectory, and NS-GEV model parameters, we can proceed

with the Monte Carlo experiment to produce confidence intervals in the T (z) and R(z, t)

estimates.

2.3.5 Summary of Monte Carlo Experiments

The Monte Carlo experiment used to estimate confidence intervals in T (z) and R(z, t) is

summarized as follows:

1. Randomly select:

(a) RCP scenario with probabilities given in Table 2.2

(b) ΔMSLi from distribution provided by Kopp et al. [2014] conditioned upon the

RCP scenario draw
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(c) θ from the posterior distribution provided by Bayesian parameter estimation (Ap-

pendix B)

2. Define Fi(z) using randomly selected ΔMSLi and θ

3. Calculate T (z) and R(z, t) using Equation 2.3 and 2.4, respectively

4. Repeat Steps 1-3 for n = 10, 000 trials for each z and t value tested

The Monte Carlo experiment is repeated for the three RCP weighting schemes described in

Table 2.2, resulting in three different samples of T (z) and R(z, t) values for each of z and t val-

ues tested. For clarity, we denote the random samples of T (z) values resulting from the Monte

Carlo experiments as tzw = [T1(z), T2(z), ....Tn=10,000(z)], where the subscript denotes the ran-

dom sample corresponding to the weighting scheme w and the superscript expresses the z

value. Here, w = {“o”, “p”, “n”}, which refers to the different RCP weights in Table 2.2. The

random sample of R(z, t) values are represented by rz,tw = [R1(z, t), R2(z, t), ....Rn=10,000(z, t)],

where the subscript again denotes weighting scheme and the superscript expresses different

z, t combinations.

2.3.6 Measuring Sensitivity to Scenario Weights (Speculation)

The distributions of the tzw and rz,tw samples for a constant weighting scheme w characterize

the uncertainty of these design metrics as a function of future emissions, sea level rise pro-

jections, and limited sample size for NS model parameter inference. However, the sample

distributions and the corresponding confidence intervals of these metrics will change with the

RCP weights. The similarity between tzw and rz,tw samples for changing values of w describes

how sensitive the estimates are to the weights assigned to the emission scenarios. Physically,

the similarity expresses the sensitivity of the estimates to future emission scenarios. Con-

ceptually, similarity between the tzw and rz,tw samples for different emission scenario weights
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expresses the sensitivity of the estimates to speculation about the likelihood of RCPs.

In this study, we use a re-scaled extension of the Bhattacharyya coefficient to measure the

similarity of tzw and rz,tw samples for different values of w. The d-dimensional Bhattacharyya

coefficient measures the similarity between d statistical samples by integration of the samples’

overlap [Kang and Wildes, 2015]:

B(f1, ..., fd) =

p∑
k=1

[ d∏
j=1

fj(xk)
]1/d

(2.7)

where B(f1, ..., fd) is the Bhattacharyya coefficient between samples f1, ..., fd, k is an index

of discrete partitions of the samples, and p is the number of partitions. Here, fj(xk) is the

probability that a member x is within partition k given the sample j. The probabilities are

defined by counting the number of members in the sample j that fall within the kth partition

and dividing by the total number of members in the jth sample (n). The value of B(f1, ..., fd)

is zero if any of the samples do not overlap due to multiplication by zero in each partition,

whereas B(f1, ..., fd) is unity for identical samples [Kang and Wildes, 2015].

In the context of this paper, d = 3 and we use the 3-dimensional Bhattacharyya coefficient to

measure the similarity between the samples of tzw and rz,tw given the pessimistic, optimistic,

and neutral weighting schemes provided in Table 2.2. Specifically, we compute:

BT (z) = B(tzo, t
z
p, t

z
n), for z = {z1, ..., zmax}; (2.8)

BR(z, t) = B(rz,to , rz,tp , rz,tn ), for z = {z1, ..., zmax}; t = {t1, ..., tmax} (2.9)

where BR(z, t) represents the sensitivity of risk samples to RCP weights as a function z

and t, and BT (z) represents the sensitivity of the waiting time samples to RCP weights as
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a function of z. Values of B are straightforward to interpret for cases when B = 0 and

B = 1. If B = 1, then there is complete overlap between the samples and thus the risk and

waiting time values are not sensitive to weights on future emission scenarios for given z or t.

In these cases, we can make inferences from the samples objectively. On the other hand, if

B = 0, then one or more of the samples do not overlap. Completely non-overlapping samples

indicates that values are dependant upon emission scenario weights, and thus inferences from

the samples are sensitive to one’s perspective. When values of B are between zero and unity,

they are more difficult to interpret. In these cases, it is more useful to compare the values

relative to other locations in the z, t space rather than interpret the meaning of partially

overlapping samples. To compare the sensitivity of R(z, t) and T (z) estimates to weights

given to future emission scenarios throughout the z, t space, we re-scale the BT (z) and BR(z)

values:

ST (z) = 1− BT (z)−min({BT (z1), ..., BT (zmax)})
max({BT (z1), ..., BT (zmax)})−min({BT (z1), ..., BT (zmax)}) (2.10)

SR(z, t) = 1− BR(z, t)−min({BR(z1, t1), ..., BR(zmax, tmax)})
max({BR(z1, t1), ..., BR(zmax, tmax)})−min({BR(z1, t1), ..., BR(zmax, tmax)})

(2.11)

where ST (z) is the sensitivity of T (z) estimates to emission scenario weights relative to

the other tested values of z, and SR(z, t) is the sensitivity of R(z, t) estimates to scenario

weights relative to the other z, t combinations. Notice that in Equations 2.10 and 2.11,

re-scaling results in values of unity for the T (z) and R(z, t) samples most sensitive to the

RCP weights, while values of zero are assigned to the least sensitive samples. The measure

of relative sensitivity to scenario weights provided by ST (z) and SR(z, t) highlights estimates

in the z, t space that are most useful for decision making. We refer to this metric as the

speculation index.
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2.4 Results

2.4.1 Risk Estimates

Let us begin by presenting the risk estimates obtained from the Monte Carlo experiment

using water level data from the Los Angeles tide gage (NOAA tide gage no. 9410660) and

the Kopp et al. [2014] probabilistic projections of ΔMSLi for Los Angeles. In Figure 2.2, the

box plots illustrate the percentiles of the rz,tn samples, or the uncertainty in R(z, t) based on

the neutral weights on RCP scenarios. Recall that R(z, t) is an exceedance probability in

this study (Equation 2.4), and therefore ranges from 0 - 1. When the box plots are drawn as

a single line, this indicates that all Monte Carlo trials resulted in the same R(z, t) value. The

R(z, t) values are most uncertain for box plots where the middle 33% is stretched between

the lower and upper bounds, indicating that the risk values are approximately uniformly

distributed between 0 - 1. In Figure 2.2, t increases from the top panel to the bottom panel,

with different values of z shown on the x-axis.

There are two properties of how the R(z, t) distributions change with time that are worth

noting. First, as t increases, the range of “at-risk” elevations expands, and the z value of

“risk-averse” elevations increases. In this paper, we define “at-risk” elevations as elevations

where R(z, t) is distributed between 0 and 1, and “risk-averse” elevations as elevations where

97.5% of the R(z, t) estimates are less than 0.001. For example, Figure 2.2A shows that by

2030, elevations less than 0.5 m MHHW are projected to be exceeded, R(z, t) estimates range

from 0.1 to 0.95 for elevations between 0.5 and 1 m MHHW, and R(z, t) estimates are less

than 0.001 for elevations 1.25 m and greater at 97.5% confidence. Thus, the range of at-risk

elevations is between 0.5 m and 1 m MHHW, while elevations 1.25 m MHHW and greater

are defined as risk-averse.

Contrast the R(z, t) distributions by 2030 shown in 2.2A with the R(z, t) distributions by
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2200 shown in 2.2D. By 2200, at-risk elevations are between 1 and 4.5 m MHHW, and the

risk-averse elevations are now 4.75 m MHHW or greater. Comparison between 2.2A and

2.2D demonstrates that risk-averse elevations for long time horizons are significantly higher

than risk-averse elevations in the short-term. This indicates that risk-averse planning and

design for long time horizons is significantly more expensive than risk-averse planning in the

short-term. Notice also the uncertainty in R(z, t) increases with t for values of z we define

as “at-risk”.

The second important property of R(z, t) distributions is their increasing variance with t for

elevations we define as at-risk. By 2030 and 2050, R(z, t) distributions for at-risk elevations

are relatively constrained and easy to interpret. For example, Figure 2.2A shows that for

z = 0.75 m MHHW and t = 13 years from 2017, R(z, t) is about 0.5. For some planning and

design decisions, this level of risk may be tolerable and the R(z, t) estimate is very useful.

By 2200, the R(z, t) distributions for at-risk elevations become very difficult to use. Figure

2.2D shows that by 2200, elevations between 1 and 4.25 m MHHW have an exceedance

probability between 0 and 1. In other words, we do not know the probability of water levels

exceeding these elevations by 2200 given the neutral weighting scheme and current sea level

rise projections. Using T (z) estimates for long planning horizons is also difficult when T (z)

estimates are based on sea level rise projections.
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Figure 2.2: Risk of water levels exceeding z by 2030 (A), 2050 (B), 2100 (C), and 2200
(D). The box plots illustrate the distribution of R(z, t) estimates obtained from the neutral
weighting scheme. The dashed line encompasses 95% of the estimates (2.5th - 97.5th per-
centiles), the blue lines contain the middle third (33rd - 67th percentiles), and the red line
marks the median estimate (50th percentile). Risk estimates are most certain when the box
plots are drawn as a single line, and least certain when the middle third is stretched between
0 and 1.
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2.4.2 Waiting Time Estimates

Figure 2.3 shows the expected waiting time estimates from the year 2000. The box plots

in the left panel illustrate the percentiles of the tzn samples, and the right panel shows the

percent of Monte Carlo trials where the randomly selected ΔMSLi and θ combination did

not cause z to be exceeded by 2200. For the Monte Carlo trials where z had zero probability

of exceedance by 2200, we classified the T (z) value as greater than 200 years from the year

2000. Since ΔMSLi projections end in the year 2200, it is not possible to calculate the

expected year of exceedance for these trials without making strong assumptions about the

trajectory of ΔMSLi after 2200. However, it is important to retain trials where z is not

exceeded by 2200, because these trials provide information describing the probability that

the expected waiting time is greater than 200 years. Retaining T (z) values in the sample

categorized as “greater than 200” creates an ordinal data-set, i.e., the values have a natural

order but we do not know the distance between all values. Hence, we restrict our analysis of

the tzw sample to positional measures such as the median and different percentiles rather than

the mean or standard deviation. We conducted the Monte Carlo experiment for increasing

values of z until 97.5% of trials resulted in T (z) classification greater than 200 years. Thus,

the maximum z value on the y-axis is very unlikely to be exceeded by 2200.

The most important characteristic of the T (z) distributions is the increasing uncertainty

in T (z) values a function of z. As z increases, the variance in T (z) estimates less than

200 years increases significantly, while a larger percentage of estimates become classified as

greater than 200 years. For example, we expect an exceedance of 0.75 m MHHW at the Los

Angeles gage between 2020 and 2050 with 95% confidence, where the likely exceedance year

is close to 2030. The expected waiting time for an exceedance of just 1 m above MHHW

becomes very uncertain, with a 95% confidence range between 2050 and after 2200. The

uncertainty in the T (z) estimates is primarily attributable to the large variance in the sea

level rise projections. Under RCP 2.6 and 4.5, mean sea levels stabilize and even decrease
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after 2100 near the low range of the projections, whereas under RCP 8.5, sea levels are very

un-likely to stabilize and appear to increase indefinitely (please see Figure 3 of Kopp et al.

[2014]). The possibility of either stabilizing sea levels or indefinite rise causes the expected

waiting times of higher z values to be especially uncertain.

While the box plots are drawn horizontally, the uncertainty bounds can also be interpreted

vertically to estimate the level z we would expect to be exceeded in year T (z) + 2000. For

example, Figure 2.3 shows that the water level we expect to be exceeded in Los Angeles by

2100 is between 1 and 1.75 m MHHW with 95% confidence, where the likely value is around

1.25 m. The water level we would expect to be exceeded by 2200 is even more uncertain,

with a 95% confidence range between 1 and 4.25 m MHHW. The increasing uncertainty in

the estimates for high values of z and T (z) makes them very difficult to use for long planning

horizons, even when considering only the neutral weighting scheme shown in Figure 2.3. If

we consider the other plausible weighting schemes on future climates, risk and weighting

time estimates become even more difficult to use for long-term planning.
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Figure 2.3: Waiting time from the year 2000 water level are expected to exceed z. The
box plots describe the distribution of T (z) estimates obtained from the neutral weighting
scheme. The dashed line encompasses 95% of the estimates (2.5th - 97.5th percentiles), the
blue lines contain the middle third (33rd - 67th percentiles), and the red line marks the
median estimate (50th percentile). The black bars on the right panel display the percent of
Monte Carlo trials where the T (z) value was classified as greater than 200 years.
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2.4.3 Sensitivity to Scenario Weights

In Figure 2.4, we plot the distribution of the R(z, t) samples for each RCP weighting scheme.

The weighting schemes are distinguished by color as displayed in the Figure 2.4A legend, and

the width of the box plots correspond to the distribution percentiles. The widest (horizontal)

line of the box plot is the 50th percentile, the next thickest line spans the middle 33% of the

estimates, and the narrowest line is the 95% range.

Notice that the R(z, t) samples overlap almost completely for t = 13 and t = 33 years from

2017 shown in Figure 2.4A and B, respectively. The sample overlap between the weighting

schemes demonstrates that inference of R(z, t) estimates for these t values is not sensitive

to weights given to future climate scenarios. Here, inference of R(z, t) would be the same

regardless of one’s perspective about future emissions, and hence the value of the speculation

index will be relatively low. Conversely, for t = 83 years from 2017, the distributions are

sensitive to weights given to future RCP scenarios. For example, the median R(z, t) value

for z = 1.25 m MHHW and t = 83 years from 2017 is about 0.2 for the pessimistic weighting

scheme, whereas the median R(z, t) value is less than 0.001 for the same z and t values

according to the optimistic weights. Hence, the median R(z, t) estimate differs by two

orders of magnitude between the optimistic and pessimistic perspectives and is therefore

highly speculative.

To highlight areas in the z and t domain that are least sensitive to scenario weights, Figure

2.5 plots the speculation index (SR(z, t), Equation 2.11) for different combinations of z and t.

The color bar represents how sensitive the R(z, t) distributions are to scenario weights, with

white-yellow colors indicating insensitivity and red-black colors denoting sensitivity. Figure

2.5 demonstrates that the R(z, t) estimates are relatively insensitive to scenario weights for

t + 2017 < 2055 and z < 0.75 m MHHW. These areas of the R(z, t) domain are insensitive

to scenario weights because sea level rise projections under the RCP scenarios overlap in
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Figure 2.4: Risk of exceeding water level z by 2030 (A), 2050 (B), 2100 (C), and 2200 (D)
according to the different perspectives on emission scenarios provided in Table 2.2. The width
of the box plots corresponds to the distribution percentiles, where the widest (horizontal)
line of the box plot is the 50th percentile, the next thickest line spans the middle 33% of the
estimates (33rd - 67th percentile), and the narrowest line is the 95% range (2.5th - 97.5th
percentile). Differences between the distributions indicate that inference of R(z, t) values is
sensitive to perspective about future emission scenarios.
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the near term (i.e. low t values), and relatively low elevations are projected to be exceeded

regardless of emission scenario (i.e. z < 0.75 m MHHW).

In Figure 2.5, we plot a line that marks the length of a relatively objective planning horizon.

The objective planning horizon represents the length of time where the risk of exceeding all

levels of z is relatively objective. Specifically, we define the objective planning horizon as the

largest value of t where SR(z, t) is less than average for all values of z. When computing the

average value of SR(z, t), we only use SR(z, t) values greater than 0 so that the average value

is not sensitive to expanding the z, t domain to higher or lower z values. Notice that within

the objective planning horizon, we have relatively high confidence in R(z, t) values for all z,

and estimates are not sensitive to scenario weights. Notice also that R(z, t) estimates are

insensitive to scenario weights for high values of z for increasing t.

R(z, t) estimates for relatively high values of z are also insensitive to scenario weights be-

cause they are not at-risk of exceedance regardless of weights on future emission scenarios.

Elevations that are not at-risk of exceedance according to all weighting schemes are useful

for the design of critical infrastructure because we can objectively state that these elevations

have a very low probability of exceedance. We define the critical infrastructure water level

plotted in Figure 2.5 as the “risk-averse” elevation according to all weighting schemes, or

the z value where R(z, t) is less than 0.001 at 97.5% confidence for each weighting scheme.

The critical infrastructure water level can be viewed in Figure 2.4 as the elevation where the

95% range is less than 0.001 for all boxplots. Notice that the critical infrastructure water

level, which can be thought of as the objectively risk-averse elevation, increases rapidly with

t. The pattern of insensitivity to scenario weights for relatively low and high z values is also

apparent in the T (z) estimates.
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Figure 2.5: The risk speculation index, SR(z, t), for different z, t combinations. Red/black
colors indicate that R(z, t) estimates are relatively sensitive to RCP scenario weights, and
white/yellow colors indicate insensitivity for the given z and t combination. The critical
infrastructure water level is the elevation that has an R(z, t) value of less than 0.001 for
all weighting schemes at 97.5% confidence. We can consider this water level objectively
risk-averse. The objective planning horizon marks the largest t value where the speculation
index is less than average for all z values. Within the objective planning horizon, we have
high confidence in R(z, t) estimates for all values of z.
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Figure 2.6 shows the T (z) distribution for all weighting schemes tested. For each z value

shown on the y axis, the central panel includes the box plots of the tzo, t
z
p, and tzn samples,

which are designated by the different colors shown in the legend. The width of the box-plot

corresponds to distribution percentiles, with the thickest (vertical) line denoting the median,

the second thickest spanning the 33% range, and the narrowest lines covering the 95% range

of the estimates. The right panel shows the percent of Monte Carlo trials where z was not

exceeded by 2200 according to the different weighting schemes.

Notice that the samples over-lap completely for low values of z, but begin to diverge as z

increases. The samples eventually converge again for the highest values of z on the y axis.

For relatively high values of z, i.e., z values greater than 4.75 m MHHW at the LA gage,

the vast majority of Monte Carlo trials predict that these elevations are not expected to be

exceeded until after 2200. This is demonstrated in the right panel, which shows greater than

97.5% of estimates past 2200 regardless of the weighting scheme used. While the year of

exceedance remains unknown for high values of z, the Monte Carlo experiment provides very

valuable information for these elevations: An exceedance of 4.75 m MHHW is very unlikely

prior to the year 2200 regardless of weight given to emission scenario.

Conversely, the Monte Carlo experiments provide ambiguous information about T (z) esti-

mates for z values near 1.5 m MHHW. Figure 2.6 shows that the median waiting time es-

timate varies by 50 years between the pessimistic and optimistic emission scenario weights.

Hence, inference of T (z) values near z = 1.5 m MHHW is sensitive to weight given to future

emission scenario and is therefore highly speculative. The presence of sample overlap for low

z values, divergence for medium z values, and eventual convergence for the highest elevations

is captured by ST (z) shown in the left panel. The speculation index indicates that the Monte

Carlo experiment is most sensitive to scenario weights for z values near 1.5 m MLLW, and

least sensitive for values below 0.75 m and above 4.75 m.

It is useful to interpret the ST (z) and SR(z, t) indices in the context of their physical meaning
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and from a planning and design perspective. In the physical context, low values indicate

that the T (z) and R(z, t) estimates are relatively insensitive to the difference in emission

concentrations between the RCP scenarios. Emission scenarios do not diverge significantly

in the short-term [Van Vuuren et al., 2011a], which explains why T (z) and R(z, t) samples

overlap for low z and t values. For long time horizons, emission concentrations are of course

very different between the RCPs. However, T (z) and R(z, t) estimates are also insensitive to

emission concentrations for very high z values, since very high z values have no probability

of exceedance regardless of emission concentrations.

From a planning and design perspective, the ST (z) and SR(z, t) indices are also significant.

Low values indicate that inference of risk and return period estimates is independent of

how much weight is given to the different emission scenarios. In these cases, selection of

appropriate design water levels is relatively objective. On the other hand, high ST (z) and

SR(z, t) values indicate that inference of waiting times and risk is dependant on the weights

given to future emission scenarios. Dependance on emission scenario weights complicates

design and planning by introducing speculation in the inference of appropriate design water

levels. From this perspective, the ST (z) and SR(z, t) indices highlight areas in the z, t space

where risk and waiting times estimates are the most straightforward to use for planning

and design. Inference that is sensitive to speculation should be avoided in order to support

objective and risk-based planning.
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Figure 2.6: The expected waiting time speculation index, ST (z) , for increasing values of
z (left panel). The central panel shows the distribution of T (z) estimates for all weighting
schemes, which are distinguished by color shown in the legend. The width of the box-plot
corresponds to distribution percentiles, with the thickest (vertical) line denoting the median,
the second thickest spanning the 33% range, and the narrowest lines covering the 95% range
of the estimates. The right panel shows the percent of T (z) estimates we classified as greater
than 200 years for each Monte Carlo experiment.
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2.5 Discussion

The results of this study highlight the problems with long-term decision making in the

context of sea level rise. There are essentially two options for selecting a suitable water level

for long-term planning or infrastructure design: we can make costly decisions and drastic

plans based relatively high, yet objectively risk-averse design water levels (Figure 2.5), or

we can base long-term decisions on lower design water levels where our estimates of risk and

waiting times are highly uncertain (Figures 2.3 and 2.2) and sensitive to speculation about

the likelihood of future emissions scenarios (Figures 2.4 and 2.6). Naturally, planners and

engineers are inclined to choose the former option. However, assuming that the cost of design

and planning increases with design water level, long-term risk-aversion for all decisions would

be extremely costly.

In the short-term (i.e. prior to 2055 at the Los Angeles gage), we have a relatively good

understanding of risk and waiting time estimates. Moreover, risk-averse elevations are rela-

tively low in the short-term compared to the long-term, and inference of design water levels

is not sensitive to perspective about future emission scenarios. Clear understanding of risk

and expected waiting times allows engineers and planners to 1) make risk based decisions

when selecting design water levels and 2) estimate how long a protective measure will be

useful. Knowledge of the useful design life allows planners and engineers to understand when

protective measures need to be re-evaluated and possibly enhanced. Thus, in order to sup-

port risk based decision making and utilization of familiar engineering design concepts, we

recommend designing protective infrastructure to have short (yet predictable) lifespans with

the option of elevating or enhancing the protective measure in the long-term.

The design paradigm of protecting in the near term with the option of enhancement in

the long-term supports the need for adaptive infrastructure design. By adaptive, we mean

designs that allow for low-cost additions in the future to protect against higher sea levels.
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An example of an adaptive design can be found in the City of Newport Beach. The City is

preparing to add a 0.22 m (9 inch) cap to existing sea walls around Balboa Island (personal

communication with City Engineer). There will be periodic 1 m (3 ft) gaps in the addition

in order to preserve ease of beach access. The gaps are designed to accommodate removable

0.22 m (9 inch) high barriers to provide flood protection during high tide events. The project

is a part of the City’s plan to raise protective sea walls incrementally through their repair

and maintenance program. The addition brings the top of the sea wall to a design elevation

between 1 and 1.1 m MHHW across the length of the sea wall. Our analysis shows that this

addition buys the City a considerable amount of time.

Figure 2.2 shows that elevations between 1 and 1.1 mMHHW are very unlikely to be exceeded

by 2030 (Figure 2.2A), and they probably won’t be exceeded by 2050 (Figure 2.2B). Here,

we interpret the risk of water levels exceeding 1 - 1.1 m MHHW prior to 2050, so this

interpretation is insensitive to perspective about future emission scenarios (Figure 2.5). The

expected waiting time until an exceedance of 1 - 1.1 m MHHW is slightly speculative (Figure

2.6), but each perspective about future emissions puts the median value of the exceedance

year near 2075. Notice that the expected waiting time estimates indicate that is it possible,

yet unlikely, that 1 m MHHW will not be exceeded until after 2200.

The practical advantage an adaptive design approach is that the structure will be useful

regardless of how fast sea levels rise throughout the 21st century. If sea level rise tracks

towards the low end of projections, then the projective infrastructure will be useful longer

than expected. On the other hand, if sea level rise accelerates quicker than expected, then

at least it is cost-effective to make additions to the existing structure. Non-adaptive (i.e.

permanent) planning and infrastructure decisions that are based on long-term risk-aversion

will only be useful under the worst-case RCP scenarios and high end of the sea level rise

projections. If all decisions are based on long-term risk-aversion, there is a substantial pos-

sibility of over designing for sea level rise and generating unnecessary resistance to resiliency
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efforts by affected stakeholders. Hence, the critical design water level presented in Figure 2.5

should be reserved for situations where adaptive design and decision making is not possible

or extremely costly.

A significant limitation of this study is that the introduced methodology was only applied to

the Los Angeles tide gage. Extreme water levels of the California coast are relatively unique

in the sense that the surge to tide ratio is very low [Menéndez and Woodworth, 2010], and

therefore sea level rise will have a relatively large impact on extreme water levels compared

to regions with larger storm surges. However, the limited application scope presents oppor-

tunities for further research. What does the critical design water level look like for areas

with large surge to tide ratios? Do the areas of the t, z space that are insensitive to climate

weights vary with surge to tide ratio? How does incorporation of storm surge projections

affect the sensitivity of risk and waiting time estimates to climate scenario weights? Indeed,

all of these questions are worth further investigation.

A secondary limitation of this study is the use of only one extreme value model for the

Monte Carlo experiment. The shape parameter of the GEV distribution is negative for

extreme water level distributions of the California coast [Zervas, 2013b], which causes the

distribution of annual maxima to have an upper bound. The upper bound on the GEV

distribution certainly produces clearer risk and waiting time estimates, but also raises the

question of how sensitive the risk and waiting time estimates are to the selected extreme

value model. Indeed, extreme value model uncertainty was not explored in this paper and

this topic is also worth future investigation.
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2.6 Conclusion

In this paper, we present methodology for engineering design that addresses three problems

with using sea level rise projections to derive design water levels: subjective likelihood of

emission scenarios, highly uncertain sea level rise projections, and translating projections into

traditional design metrics. The methodology uses a non-stationary, generalized extreme value

model for pairing sea level rise projections with historic data to determine 1) the expected

waiting time until water levels exceed a specified elevation, and 2) the risk of water levels

exceeding a design elevation by the end of the project’s design life. We provide a Monte Carlo

procedure to estimate the confidence intervals in the risk and waiting time estimates, and

we introduce a “speculation” index to quantify the sensitivity of the Monte Carlo procedure

to perspective about the likelihood of future emission scenarios. The speculation index

highlights risk and waiting time estimates that are relatively objective as a function of

design water level and planning time frame. We use the speculation index to derive a critical

infrastructure design water level and an objective planning window for common decisions.

The methodology is illustrated using the historic data and sea level rise projections for Los

Angeles, California. Results show that estimates of risk and expected waiting times are

remarkably uncertain and speculative in the long-term, i.e., late 21st century and beyond

in Los Angeles. Risk and waiting time estimates can only be considered objective over long

time periods for extremely high water levels. However, in the short-term (i.e. prior to 2055

for Los Angeles), risk and waiting time estimates are relatively stable and objective for all

water levels. The results imply that risk-based and cost-effective decisions are only possible

over relatively short design lifespans. The great challenge of planning and designing for

highly uncertain and speculative conditions naturally leads to high risk-aversion. However,

extreme risk-aversion exposes us to over designing and planning for sea level rise. Hence,

we recommend that long-term risk-averse planning for sea level rise be reserved for only the

most sensitive infrastructure and non-adaptable decisions. The majority of planning and
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design should still be based on what is predictable and not speculative guesses.
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Chapter 3

Going beyond the flood insurance rate

map

3.1 Chapter Summary

Flood hazard mapping in the United States (US) is deeply tied to the National Flood In-

surance Program (NFIP). Consequently, publicly available flood maps provide essential in-

formation for insurance purposes, but do not necessarily provide relevant information for

non-insurance aspects of flood risk management (FRM) such as public education and emer-

gency planning. Recent calls for flood hazard maps that support a wider variety of FRM

tasks highlight the need to deepen our understanding about the factors that make flood maps

useful and understandable for local end-users. In this study, social scientists and engineers

explore opportunities for improving the utility and relevance of flood hazard maps through

the co-production of maps responsive to end-users’ FRM needs. Specifically, two-dimensional

flood modeling produced a set of baseline hazard maps for stakeholders of the Tijuana River

Valley, US, and Los Laureles Canyon in Tijuana, Mexico. Focus groups with natural resource
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managers, city planners, emergency managers, academia, non-profit, and community lead-

ers refined the baseline hazard maps by triggering additional modeling scenarios and map

revisions. Several important end-user preferences emerged, such as 1) legends that frame

flood intensity both qualitatively and quantitatively, and 2) flood scenario descriptions that

report flood magnitude in terms of rainfall, streamflow, and its relation to an historic event.

Regarding desired hazard map content, end-users’ requests revealed general consistency with

mapping needs reported in European studies and guidelines published in Australia. How-

ever, requested map content that is not commonly produced included: 1) standing water

depths following the flood, 2) the erosive potential of flowing water, and 3) pluvial flood

hazards, or flooding caused directly by rainfall. We conclude that the relevance and utility

of commonly produced flood hazard maps can be most improved by illustrating pluvial flood

hazards and by using concrete reference points to describe flooding scenarios rather than

exceedance probabilities or frequencies.

3.2 Introduction

Management of flooding is a major societal challenge that is only expected to worsen due

to several trends including population growth and urbanization [Sundermann et al., 2014],

sea level rise [Hallegatte et al., 2013b], intensification of precipitation extremes [Lenderink

and Van Meijgaard, 2008, Coumou and Rahmstorf, 2012], and the compounding effects of

sea level rise and terrestrial flooding [Moftakhari et al., 2017]. Insured losses from natural

disasters have increased globally [Munich Re, 2005], and while the causes of growing losses are

complex and debatable, the increasing exposure and value of capital at risk has undoubtedly

played a major role [Bouwer, 2011]. Exposure to flooding is particularly acute in the United

States (US), where a combination of subsidized flood insurance and homeowner tax incentive

has actually encouraged risky development in floodplains and coastal zones [Bagstad et al.,
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2007]. Losses from floods and hurricanes in the (US) have tripled over the past fifty years

[Gall et al., 2011], and the National Flood Insurance Program (NFIP) is operating at a deficit

of about $1 billion annually with a debt of over $20 billion owed to the US treasury before

considering insured losses from the 2017 hurricane season [Pasterick, 1998, Brown, 2016]. In

fact, properties insured by the NFIP represent the second largest liability of the US federal

government after the Social Security program [Gall et al., 2011].

The American Society of Civil Engineers (ASCE) has called for a national strategy to ad-

dress the escalation of flood losses and threats to public safety, but reports that the US

public and policy makers have been unwilling to take action despite major hurricanes such

as Katrina and Sandy [Traver, 2014]. The ASCE directive aligns with a global paradigm

shift in management philosophy away from flood control and towards flood risk manage-

ment. Flood risk management (FRM) refers to a portfolio of approaches for reducing risk

that is not limited to controlling flood waters with engineered structures, but also includes

effective land use planning, emergency response, and personal preparedness. Importantly,

FRM accepts that absolute protection is not possible. Comprehensive FRM reduces the

reliance on engineered flood defenses, which is of paramount importance in the US due to

the marginal condition of levees and lack of federal resources available for maintenance and

necessary upgrades [Traver, 2014]. Studies have shown that robust FRM does indeed lead to

significant reductions in fatalities and monetary losses [Kreibich et al., 2017, 2005], however

Traver [2014] and Merz et al. [2007] both report that effectively implementing FRM relies

on stakeholders who understand their exposure and also have access to tools that are useful

for managing personal, household, and community risks.

Flood hazard maps are the most commonly used tool for flood risk communication and man-

agement. In the European Union (EU), member countries are under a mandate to develop

national flood hazard maps, flood risk maps, and FRM plans based upon the mapped infor-

mation [Council of European Union, 2007]. General guidelines for meeting end-user needs
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have been developed based on participatory processes [Meyer et al., 2012, Hagemeier-Klose

and Wagner, 2009, Martini and Loat, 2007], which reflect the varying needs of different end-

users for different types of information, as well as the need for context-sensitive information.

For example, Meyer et al. [2012] present distinctions between the mapping needs for strate-

gic planning personnel, emergency management personnel and the public, and show that

geographical factors (e.g., mountains, polders) influence the need for velocity data.

In the US, flood mapping is tied to the NFIP and the resulting Flood Insurance Rate Maps

(FIRMs) delineate the spatial extent of inundation with a 1% and 0.2% annual exceedance

probability (AEP). As a vehicle designed to administer an insurance program, the FIRM

provides essential information for insurance purposes. Properties with federally backed mort-

gages located within the 1% AEP floodplain are required to purchase flood insurance, while

the flood elevations associated with the FIRM are used for insurance underwriting. How-

ever, the binary “in or out” floodplain designation by the FIRMs’ thin grey lines have been

criticized for presenting flood risk as definitive and therefore discouraging important flood

hazard discourse [Soden et al., 2017]. Burby [2001] also suggests that the effectiveness of

the NFIP is limited because FIRMs lack information necessary to integrate flood hazard

considerations into local planning. The Federal Emergency Management Agency (FEMA)

has recently expanded its mapping efforts through the Risk MAP program [FEMA, 2014],

which produces “non-regulatory” flood hazard data such as depth, velocity, and exceedance

probability grids in addition to the standard FIRM [FEMA, 2016]. However, the availability

of non-regulatory flood hazard data is limited, and the system is not configured to align

mapping products with context-sensitive needs for decision-making. In fact, there is a need

for US-centric studies and guidelines for producing maps that are useful for a variety of

FRM tasks, i.e., making flood hazard data useable for local end-users across vast hydrologic

and social conditions. Flood mapping technology has evolved rapidly over the past decade

with modern two-dimensional (2D) hydraulic flood modeling software, computing systems,

and increasingly available high quality data to produce point-wise flood hazard information
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including flood depths, velocities, flood forces and shear stresses [Sanders, 2017]. Hence, a

key issue is making this advanced and complex modeling output useable in FRM.

Producing useable scientific information for non-expert end-users is quite challenging, how-

ever, as demonstrated by the climate science community [Dilling and Lemos, 2011]. Useable

scientific information (or flood hazard maps in this study) must bridge the gap between what

the producers of scientific knowledge deem useful and what is actually helpful in practice. If

scientists produce information absent of end-user input, then the produced knowledge is not

always applicable to solving problems. Conversely, if end-users set the agenda, end-users may

require information that is not possible to produce or weak scientifically. The co-production

of scientific knowledge attempts to avoid these issues through an iterative process involving

domain experts and end-users. Studies of co-production suggest information must be “end-

to-end” useful - applicable to the needs of many users, adaptable for disaster planning as

well as mitigation, and able to incorporate local knowledge of threats and hazards [Agrawala

et al., 2001, Feldman and Ingram, 2009]. Dilling and Lemos [2011] reported that nearly

every example of the successful use of climate knowledge resulted from iteration between the

producers and users of scientific information, while the process of iteration itself can also

uncover new uses that have not been previously identified. Herein, we recognize the lessons

learned from the climate science community by engaging in the co-production of flood hazard

maps.

Within the study of engaged scholarship there is a broad spectrum of knowledge “co-

production”, depending on the degree of iterativity and duration of scholarly engagement.

In this paper, we report a single iteration of a broader co-production effort known as Flood-

RISE, which aims to promote resilience to flooding in Southern California through continued,

meaningful efforts of engagement. The goal of the present study is to both deepen under-

standing about the factors that make flood hazard maps useable at the local scale and to

expand the applications of flood hazard mapping via lessons learned from the co-production
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of flood hazard maps. In order to meet this objective, an interdisciplinary team of engineers

and social scientists developed a set of baseline flood hazard maps for the stakeholders of the

Tijuana River Valley in California, US and Los Laureles in Baja California, Mexico (MX).

Following baseline hazard mapping by engineers at the two sites, focus groups were held with

a diverse group of end-users comprised of 52 local professionals and community members.

The focus groups were designed to understand 1) how to improve the clarity and utility of

the baseline hazard maps and 2) how to re-configure the hydraulic models to produce rele-

vant data and useful maps for the communities. In addition to many map revisions, several

original flood hazard maps were produced as a direct result of this iteration of knowledge

co-production.

The paper continues with a description of the two study sites involved in the co-production

of flood hazard maps (Section 3.3). In Section 3.4, we present the baseline (pre-focus group)

flood hazard maps produced for each site. Detailed descriptions of the methods used to pro-

duce each hazard map are included in Appendix C. Section 3.5 outlines the implementation

and design of our end-user focus groups. We present the results of the end-user focus groups

in Section 3.1-3.6.2, and the new hazard maps that resulted from the focus groups in Section

3.6.3. This paper concludes with a discussion of these Sections in the context of previous

studies and current flood mapping practice in Europe, Australia, and the US.

3.3 Study Site Descriptions

The Tijuana River Valley (TRV) and Los Laureles (LL) communities were selected for the

co-production exercise due to their on-going FRM challenges. The TRV is adjacent to the

US/MX border and forms the Southwestern most corner of the contiguous US (Figure 3.1A-

B). The Tijuana River watershed encompasses 4530 km2 (1750 mi2) and is characterized by

four major water-supply reservoirs which control about 75% of storm water flow. Due to
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its location at the mouth of the Tijuana River, the TRV is prone to flooding from Tijuana

River discharges, storm tides, ocean swell, and intermittent flows from LL and Smugglers

Gulch (Figure 3.1A, Appendix C.1). The concrete-lined Tijuana River Channel was designed

to convey spillway discharges from upstream reservoirs safely through downtown Tijuana.

Sediment accumulation has reduced the capacity of the Tijuana River channel near the

US/MX border and requires dredging to maintain its design conveyance. The TRV has rural

housing, an equestrian (business) presence, and government facilities, but land use in the

TRV is primarily preserved for natural habitats or agricultural uses [TRNERR, 2010]. Land

use in the TRV contrasts the Mexican side of the border where population density is high

due to the presence of colonias and formal settlements.

LL is a canyon community of Tijuana located south of the US/MX border in the LL catch-

ment (Figure 3.1C). The catchment is relatively small compared to the Tijuana River Water-

shed, and flooding is caused by locally intense precipitation. Flows from LL enter the TRV

from the south after passing through a small culvert at the watershed outlet. The culvert

is fed by a network of concrete lined storm-water channels, which is continually expanding

to prevent stream bed erosion and protect adjacent housing developments. The network of

concrete lined channels and expanding urban development has increased the discharges that

must be conveyed by the culvert. In both study sites, flooding is a known and recurring

issue. Ponding has been observed behind the LL culvert during rainstorms, and a culvert

blockage lead to severe flooding and subsequent evacuations in LL and southern Imperial

Beach (personal communication, March, 2016). In the TRV, flooding occurs when the up-

stream reservoirs reach capacity and are forced to open their spillways. Spillway discharges

have occurred seven times from 1940 to the present [IBWC, 2006]. Indeed, hazard maps

which only delineate at risk areas have limited use for locals; stakeholders already know the

TRV and LL are flood prone. Hazard maps that depict more than the traditional 100 year

flood extent are, however, scarce.
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Figure 3.1: A) Tijuana River Valley and relevant features. The Valley is bounded by the
City of Imperial Beach to the North, the City of San Diego to the East, and the City
of Tijuana to the South. B) Tijuana River Watershed and broader geographical context.
Notice the international aspect of the Watershed; about one third of the Watershed area is
within the US, and the rest is within Mexico. C) Los Laureles community and Los Laureles
main channel. The culvert is also shown, which conveys storm water discharges from the
channelized section of the Los Laureles stream network.

3.4 Baseline Flood Hazard Maps

Baseline flood hazard maps were produced to demonstrate to end-users the range of flood

hazard data that can be produced with modern methods and to stimulate discussion about

hazard map improvement and desired content. At this point, it is helpful to define “flood

hazard” as the physical and probabilistic characteristics of floods. The baseline flood hazard

maps therefore depict the intensity of spatially varying properties of floods, such as the depth

of flooding for a specified probability. We explicitly define flood hazard to distinguish between
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Figure 3.2: A) Federal Emergency Management Agency Flood Insurance Rate Map for
the Tijuana River Valley. The orange area represents the flooding extent associated with
the 0.2% annual exceedance probability (AEP) flood, while the blue area represents the
flooding extent of the 1% AEP flood. The red hashed area delineates the regulatory floodway,
where development must not increase the designated base flood elevation by more than 0.3
m (1 ft). B) IMPLAN flood hazard map for the Los Laureles subbasin. The red and
blue zones represent inundation extent for different exceedance probability flooding events.
However, details regarding mapping methodology and precise hazard zone explanations were
not available.

maps of hazard and vulernability. Merz et al. [2007] defines vulnerability as the combination

of loss susceptibility and damage potential. Thus, flood vulnerability maps show what could

be affected by floods and by how much what is affected could be damaged. We restrict our

analysis to flood hazard maps because producing vulnerability maps generally requires data

that are unavailable in the absence of extensive surveys. In this study, end-users analyzed

maps depicting six different flood hazards: depth, force, exceedance probabilities, dominant

causes, durations, and extents. The proceeding section presents the hazard maps analyzed

by the end-users most applicable to other sites, i.e. we do not present all of the baseline

hazard maps herein. The hazard maps we produced were analyzed together with the publicly

available hazard maps.

Figure 3.2 shows the publicly available hazard maps, which will serve as the baseline flood

extent hazard maps in this study. The FEMA FIRM is shown in Figure 3.2A, while Tijuana’s
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Figure 3.3: A) 1% annual exceedance probability (AEP) flood depths in the Tijuana River
Valley. Mapped flood depths result from either storm tides, canyon flows, or Tijuana River
discharges (Appendix C.1). The elevation data reflects 2015 topography, after dredging of
the Tijuana River channel near the US/MX border. B) 1% AEP flood depths in Los Laureles.
Mapped flood depths are caused by streamflows from local precipitation, assuming that the
culvert was unobstructed during the duration of the flood. The depth ranges are 0.11− 0.45
m for ankle to knee, 0.45 − 1.0 m for knee to waist, 1.0 − 1.69 m for waist to head, and
greater than 1.69 m for above head depths.

Instituto Municipal de Planeacion (IMPLAN) Flood Hazard map for LL is shown in Figure

3.2B. Both hazard maps depict the inundation extent associated with different AEPs, while

the FEMA FIRM also depicts a regulatory floodway. Development in the regulatory floodway

is prohibited unless the proposed structure will not increase the base flood elevation by more

than 0.3 m (1 ft). Notice also that the flood hazard is described by its associated annual

probability, which is consistent with official FEMA mapping legends and terminology. The

IMPLAN Flood Hazard map is similar; areas at risk of flooding are shown, but flooding

extent is the only characteristic depicted. Flooding extent is also the most commonly mapped

hazard in Europe, but many European countries also provide maps of flood depth [Moel et al.,

2009, Nones, 2017].

Figure 3.3A shows the analyzed flood depth map for the TRV, while the depth map for

Los Laureles is shown in Figure 3.3B. Both maps characterize depths using a body scale,

and depict depths associated with 1% AEP events. The body scale is based on the average
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Figure 3.4: A) Flood force with 1% annual exceedance probability (AEP) in the Tijuana
River Valley. B) Flood force with 1% AEP in Los Laureles. We use vh as a proxy for the
flood force, since contours are specifically different thresholds of vh: children toppled at 0.4
m2/s, adults toppled at 0.65 m2/s [Xia et al., 2014], cars sliding at 0.8 m2/s [Xia et al., 2011],
and structural damage beginning at 1.5 m2/s [Kreibich et al., 2009].

person height reported by Fryar et al. [2012], with the body part thresholds defined using

the 7.5 heads rule from the field of artistic anatomy [Richer, 1986]. We use a body scale to

contour flood depths with the intention of producing flood hazard data that is more relatable

to end-users. The clear advantage of providing maps depicting the depth of flooding is that

potentially unsafe areas during extreme events within the floodplain are easily identified.

Figure 3.3 also demonstrates our (pre-focus group) approach for communicating the mapped

hazard. Specifically, we elected to describe flood hazards by their annual probabilities and

contour intensity of the hazard with a qualitative scale. Data shown on the map other

than the flood hazard was limited to allow end-users to focus requests and revisions on the

hazard data itself. All of the baseline hazard maps were presented and described in a similar

manner.

Figure 3.4 shows the analyzed flood hazard maps which incorporate flow velocity information,

where the flow velocity, v, multiplied by flood depth, h, is contoured using a scale reflecting

the strength or “force” of the flood waters. We use vh as a proxy for the force of the flood

waters because thresholds for toppling people and moving cars have been reported in terms
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Figure 3.5: A) Annual exceedance probability (AEP) of ankle depth flooding in the Tijuana
River Valley. Contours represent the annual probability that either storm tides, canyon
flows, or Tijuana River discharges can cause flooding that exceeds ankle depth. B) AEP of
flood forces that can topple children in Los Laureles. Here, contours represent the annual
probability that streamflow will be intense enough to topple children. The ankle depth
threshold was defined as 0.11 m, and the children toppled threshold was defined as 0.4 m2/s.

of vh, or discharge per unit width [Xia et al., 2014, 2011]. A vh criterion was also found

suitable for predicting structural damage to homes [Kreibich et al., 2009, Gallegos et al.,

2012], so vh can be used to describe a range of hazardous conditions. Although the “force”

map is more precisely described as a flood discharge per unit width map, we use the word

force for simpler communication. By relating the intensity of vh to the vulnerability of

people, cars, and homes, the map could be used for strategic land use planning or emergency

response. We note that Australian flood studies produce information describing the severity

of v and h, and recommend that hazard zones are defined by vh thresholds [AEMI, 2013].

The baseline hazard maps were associated with the 1% AEP event for consistency with

the usual presentation of flood hazard information, although each hazard map presented

thus far could be produced for an event more or less likely than 1% AEP. Hazard maps

can also display multiple AEP events on a single map. This is accomplished by contouring

the AEP of a particular hazard threshold, rather than contouring the intensity of a flood

hazard with a specified AEP. Figure 3.5 presents the analyzed maps which contour AEP

99



www.manaraa.com

rather than intensity of depth or force. The AEP of ankle depth flooding in the TRV is

shown in Figure 3.5A, while Figure 3.5B displays the AEP of flood forces strong enough to

topple children in LL. AEP maps of either h or vh thresholds are attainable by simulating

multiple floods and combining the results on a single map. The maps shown in Figure 3.5 can

be produced using a wide variety of hazard thresholds not limited to ankle depth flooding

or children toppled. Here, mapping exceedance probabilities of a specific hazard threshold

quantifies and communicates the likelihood of a particularly negative consequence of flooding.

However, the AEP map is difficult to produce (Appendix C.3) and presents highly technical

information. Thus, it may present challenges in communicating with end-users.

The maps presented in Figure 3.2-3.5 can be produced for a wide variety of locations and are

not limited to site specific hydrologic conditions. We do not present the site specific baseline

hazard maps produced for the end-users in this paper; however, the site specific hazard maps

illustrating dominant drivers and duration of inundation can be viewed online following the

links in the data availability section. The hazard maps presented in Figure 3.2-3.5 exemplify

the range of flood hazard data presented to the end-users and our original approach for

communicating the mapped hazard. We note that Figure 3.2-3.5 are not identical to the

maps analyzed by the end-users since they were adapted for presentation format herein.

Specifically, legend placement and fontsize is slightly different in Figure 3.2-3.5 from the

maps analyzed by the end-users, while Figure 3.2-3.5 also do not include street and landmark

labels that were included in the baseline maps. However, the legend content and text, map

titles, hazard data, base maps, and color schemes are identical between maps analyzed by

end-users and Figure 3.2-3.5. The cartographic design of the baseline hazard maps generally

followed recommendations for designing flood risk maps provided by Fuchs et al. [2009].
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3.5 Stakeholder Focus Groups

Four focus groups were held at each study site, which were distinguished by job-function

related to FRM. The TRV focus groups included 22 total participants, with six represent-

ing public works professionals and city planners, eight representing emergency managers,

five representing natural resource managers, and three categorized as non-governmental or-

ganizations or community. The LL focus groups included 33 participants total, with nine

individuals representing an academic affiliation, six representing government, eleven rep-

resenting emergency managers, and seven representing non-governmental organizations or

other community members. Participants of each focus group were recruited through per-

sonal communication and referral sampling. It was not possible to strengthen reliability of

the focus groups by replicating cohorts because a limited number of individuals are involved

with FRM at the study sites. Thus, by limiting our focus groups to individuals who play a

role in local FRM, we strengthened the study cohort by including the most relevant partic-

ipants based on job function. Representation was not identical at the two sites because 1)

governmental and organizational structures vary between the two countries and 2) partici-

pants were chosen based upon their importance to decisions related to FRM in the respective

sites.

The TRV and LL focus groups were each two and a half hours in length, during which a

facilitator elicited information regarding the focus group’s perception of the baseline flood

hazard maps. A large format hardcopy of each map was distributed to all participants along

with a glossary that described baseline map terms. After individually examining the map,

the facilitator would ask the engineer who produced the map to explain the hazard map

and establish a common understanding. Participants were able to ask the engineer ques-

tions, while the facilitator would ask questions to test understanding. Data was generated

throughout the focus groups by the facilitator adhering to a script with questions specific to

each baseline hazard map. For example, the facilitator would ask participants about their
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opinions of the indicators used in the map legends, the utility of the mapped hazard data,

and information they would like to see depicted but was not included. The complete facili-

tation plan is available in the supplemental materials. This process repeated for each of the

baseline hazard maps.

Following the presentation and discussion of the baseline hazard maps, survey data was

collected. The surveys were designed to elicit information that would be useful for re-

configuring the hydraulic models and producing flood hazard data relevant to the focus

group participants. Results from the final “exit” survey addressed several important aspects

of producing relevant flood hazard data: end-user job function, planning time frames of

interest, flood return periods of interest, flood drivers of interest, relevant FRM strategies,

and environmental conditions of interest. Each question in the survey was followed by a

range of options, and the focus group participants were prompted to select a single option

in response to each question. The full exit survey is also provided in the supplementary

information.

Data was collected throughout the focus groups by recording conversations and reinforced

by note-taking. Furthermore, transcripts were prepared of all conversations based on audio

recordings. Transcripts were translated into English then analyzed using open coding to

identify general themes and concepts followed by axial coding (categorization) and identi-

fication of patterns and relationships among the concepts [Saldaña, 2015, Feldman, 1995].

Transcripts of the focus groups were analyzed independently using codes including “Re-

quested Map Revisions” and “Requested Map Scenarios” specifically to determine end-user

expressed (1) requested improvements to baseline maps and (2) desirable flood hazard maps.

“Requested Map Revisions” included requests and inquiries related to the map legend, units,

and contextual information. Information that was useful for re-configuring the hydraulic

models (new scenarios) and producing new hazard maps were categorized as “Requested

Map Scenarios.” Flood mapping scenarios that were specifically mentioned or requested by
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participants were verified by independent analysis. Data obtained from the exit surveys were

also categorized as “Requested Map Scenarios.”

3.6 Results

3.6.1 Requested Map Revisions

Table 3.1 summarizes the requested map revisions of the end-users from both sites. The

requested revisions generally fell into three categories: requests for the hydrologic/meteoro-

logic conditions of the mapped hazard, further clarification of the map legends, or requests

for additional geospatial data to be shown on the map. The requests presented in Table

3.1 were specifically mentioned by participants and confirmed by discussions recorded in the

transcripts.

There were several important requested map revisions that were common to the end-users of

both sites. First, end-users were particularly interested in the amount of rainfall or stream-

flow that caused the flood hazard on the map. The amount and duration of precipitation

leading to the mapped hazard was often requested for both sites, while TRV end-users re-

Table 3.1: Summary of the end-users’ requested map revisions. These specific requests were
identified through transcript content analysis.

Tijuana River Valley Stakeholders Los Laureles Stakeholders
requested hydrologic/meteorologic information: - amount and duration of precipitation - amount and duration of precipitation

- volumetric flow rate - flooding mechanism (cause)
- conditions related to previous flood

legend requests/comments: - quantify legend thresholds - quantitative information
- scientific units - scientific units
- erosion scale - relate flooding to erosion
- children toppled threshold not appropriate - relate velocity to infrastructure damage

- non-technical language
additional geospatial data requests: - access roads - access roads

- river channel - channels
- levees and dikes - population/demographics
- landmarks - sediment basins
- park trails - topography
- sediments and vegetation - aerial photo with year

- locations of dwellings and shelters

103



www.manaraa.com

quested the flow rate of the Tijuana River associated with the hazard maps. This illustrates

the desire to relate the mapped hazard to information that is available in real time or other

publicly available information. LL end-users also asked how the mapped scenario related to

previous flooding events and noted that the precise frequency of the storm is not necessary

for many users. Notice that the baseline hazard maps were described by the probability of

the mapped hazard only (Figure 3.3 - 3.5), and not by the conditions leading to the mapped

flood hazard such as the amount of rainfall.

Second, participants of both sites were interested in the quantitative or scientific units of

the hazard legends. In general, the participants found the qualitative legends helpful and

informative, but clarification was needed to explain the basis for the qualitative thresholds.

For example, the “children toppled” hazard criteria (Figure 3.4) was received with mixed

reactions. Several participants were confused by the distinction between hazardous condi-

tions for children versus adults, which required additional explanation, and others viewed

this criteria as alarmist. A participant representing public works professionals said: “I think

[children toppled] is an alarming metric. I don’t know if it would be useful for my city work...

maybe a different way of identifying intensity would be more useful.” Another participant

representing natural resource managers noted: “I would be interested in knowing the veloc-

ity or what the force impacts are. For what I do, I can’t write in an EIS [Environmental

Impact Statement] that a child would be toppled in this area, so that wouldn’t work for

me.” End-users representing natural resource managers were generally more interested in

relating the velocity information to the erosive potential of the flowing water, and several

participants recommended an erosion scale based on velocity and land cover data. On the

other hand, end-users representing emergency managers did find the metrics in the force

map (Figure 3.4) useful.

Emergency managers noted that the flood intensity descriptors of the force map would help

them decide where to allocate resources during a flood based on the depicted severity, while
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the “cars sliding” metric would help determine which roads would be inaccessible during

an extreme event. Emergency managers also said the force map would help them prepare

for hazardous debris flow during a flood: “Let me tell you why this [force map] is really

important... what I’m really concerned about down in the Valley is...anything that’s a

hazard in the river that’s actually moving. If I see a barn, and I know that its structural

home damage in this area, I’ll be a little more on alert because... hey those barns and stuff,

they’re gone. And so now I know there’s more things in the river that not only can create a

hazard to me but that can also adjust the flow of the river as well.” Indeed, participating

emergency responders were primarily interested in the relative severity of the flood hazard

within the floodplain.

Lastly, end-users requested a wide variety of additional geospatial data to provide additional

context, i.e, information beyond the illustrated flood hazard. The common geospatial data

requests between the two sites included depictions of access roads, the river channels, and

important flood control infrastructure. Of course, the relevant geospatial data will depend

on the end-user and site specific characteristics, but many end-users requested the locations

of access roads and river channels.

3.6.2 Requested Map Scenarios

Transcripts were examined to extract information that was useful for re-configuring the

hydraulic models for new scenarios. This information includes environmental conditions of

interest, relevant magnitudes and types of flooding events, and requested flood hazard data

(model output). Re-configuring and re-running the models involves changes to model inputs

such as a topographic data and boundary conditions. Table 3.2 shows the data we collected

from the transcripts that were relevant for producing the new flood hazard maps. In addition

to the focus group transcripts, data from the exit surveys were used to configure relevant
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Table 3.2: Summary of information used to re-run the hydraulic models and produce new
hazard maps (requested map scenarios). These specific requests were identified through
transcript content analysis.

Tijuana River Valley Stakeholders Los Laureles Stakeholders
relevant flood magnitudes and drivers - historic floods - historic floods

- more frequent than 100 year/ 1% AEP - more frequent than 100 year/ 1% AEP
- storm water runoff - pluvial flooding
- nuisance flooding/ non-extreme events
- wave overtopping (Imperial Beach)

environmental conditions of interest - blockages/obstructions - blockages/obstructions
- worst case flooding/infrastructure fails - worst case scenario
- different channel capacities - future channelization
- different channel locations - future land use
- early season/late season
- sea level rise

requested flood hazard data/model output - output related to erosion potential - output that predicts erosion potential
- output that depicts standing water - output based on forecasted rain
- duration of flooding event - duration of flooding
- velocity of flood waters - maximum velocity of flood
- real-time data
- suite of maps related to different rainfall depths

flood modeling scenarios. Figure 3.6 shows the results of the exit survey as a percentage of

the participants’ responses. We note that these results are not statistically significant nor

representative of all end-users of flood hazard data, but they were useful for complementing

the qualitative information obtained from the transcripts. Comparison between the exit

survey results (Figure 3.6) and the modeling requests documented in the transcripts (Table

3.2) reveal several important stakeholder preferences and are considered highly relevant to

the specific end-users in this study.

Regarding the magnitude of the mapped flooding event, end-users were interested in events

more frequent, or smaller in magnitude, than the 100 year (or 1% AEP) flood. TRV and

LL end-users specifically asked to see hazards associated with more frequent events (Table

3.2), and when asked “What return period is most useful to be mapped?”, more than half

of end-users from both the TRV and LL focus groups selected return periods of 20 years or

less. The 100 year flood was still considered relevant, however end-users generally considered

the hazards of frequent floods more useful for day-to-day decision making. One participant

noted: “We often focus a lot on the 1% [flood] because of FEMA and things like that, but in

terms of what people are experiencing right now, they’re noodling around with like 5 or 10

year events which is what’s causing them problems... hitting those frequencies that people
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are more likely to see, that would be a valuable communication tool.”

Another important finding that was particularly evident from the LL focus groups was

interest in the hazards of pluvial flooding, or flooding caused by storm water runoff. Indeed,

twice as many LL end-users selected “pooled rainfall” compared to “excessive streamflow” as

the most useful flood driver to be mapped. This interest was documented in the transcripts

for both sites, i.e., TRV end-users noted that storm water runoff can cause flooding in

neighborhoods just north of the River Valley. One of the TRV end-users described how

nuisance flooding associated with storm water is noticeably absent from publicly available

maps: “We have areas in the city that experience nuisance flooding, and even though it

doesn’t show up on the FIRM maps as an area of special flood hazard, ...you almost have

to find out from property owners in there, knock on their doors, [and ask] do you ever get

floods here? [owners respond] ’Oh yeah all the time.’.” LL end-users were also concerned

with flooding caused by storm water runoff, but they were more interested in flood hazards

caused by extreme rainfall events along steep, canyon terraces that are not adjacent to the

storm water channels. Mapping the hazards associated with direct rainfall is considerably

different from traditional floodplain mapping, whereby the floodplain is delineated by routing

discharges that exceed channel capacities and spread across the floodplain (e.g. Appendices

C.2-C.2.4). Hence, it appears that participating end-users astutely discerned a limitation of

this traditional flood modeling approach.

When asked “What conditions do you most want to see?”, responses were relatively uniform

among the choices offered. The exit survey revealed a slight preference for current conditions

in the TRV and obstructions in river channels for LL end-users. The transcripts further sup-

port interest in scenarios involving blockages. At both sites, end-users were concerned about

trash and debris obstructing flow beneath bridges and through the culvert in LL (Figure

3.1). Accordingly, end-users requested to see the impact of obstructions in river channels

(Table 3.2), and also “worst case” flooding scenarios involving some kind of infrastructure
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failure. We also note that maps showing the possible impacts of climate change on flood

characteristics were not especially relevant to the participating end-users. Indeed, LL partic-

ipants selected “changes in rainfall patterns” least frequently when asked “what conditions

do you most want to see?”, while sea level rise scenarios were slightly less preferred relative

to current conditions in the TRV. Again, these results should not be viewed as representative

of all end-users of flood hazard data, but it is important to note that these end-users did

not view climate change impacts on flood hazards as more relevant than scenarios involving

infrastructure failures or channel blockages.

By far, the most requested flood hazard data, or hydraulic model output, was for data that

described the erosive potential of flowing water. Both TRV and LL participants requested

model output that can describe erosion potential or susceptibility (Table 3.2), and after

presenting the flood force map (Figure 3.4), end-users asked for the velocity of the flood

waters to be related to erosion (Table 3.1). It is also worth noting that before being shown

the flood force map, end-users at both sites requested information describing the velocity of

the floodwaters. Aside from maps depicting velocities or erosion potential, end-users also

requested inundation maps based on real time information or rain forecasts. One of the

participants suggested a collection of maps related to different rainfall depths as a substitute

for real time mapping. Lastly, community members of the TRV requested hazard maps

depicting areas susceptible to standing water. Areas susceptible to standing water are a

concern among community members due to increased likelihood of mosquito activity and

pollutant exposure. The following section describes both the new hazard maps and improved

presentation of the hazard data that was supported by the end-user focus groups.
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Figure 3.6: Results of the exit survey designed to provide insight on relevant flood fre-
quencies, drivers, and environmental conditions. Column (A) includes TRV responses (22
participants), and column (B) includes LL responses (33 participants). The most distinct
responses include the reported utility of maps illustrating more frequent events (TRV) and
pooled rainfall (LL). The lack of a clear preference for relevant environmental conditions is
worth noting. Here, “environmental conditions” are defined as the physical conditions of
study area or the state of climate related variables during the simulated flood. Maps depict-
ing possible impacts of climate change (e.g. sea level rise and changes in rainfall patterns)
were not the most desired conditions for end-users of either site.
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3.6.3 Co-produced Flood Hazard Maps

In this section, we present the flood hazard maps that were produced after re-configuring

the hydraulic models based on the results of the focus groups. The maps presented herein,

Figures 3.7 - 3.9, do not include all of the maps we produced post-focus group, but rather

the hazard maps that both support and expand upon previous studies offering guidance for

improving flood hazard maps. All hazard maps produced in this study in response to end-user

feedback can be viewed online by following the links in the data availability section. Herein,

we also present the mapped hazard data according to the end-users’ requested revisions to

exemplify effective means of communicating the mapped hazard according to these end-users.

First, we focus on end-user interest in “pooled rainfall” or storm water runoff. Figure 3.7

shows the pre and post-focus group flood depth maps for LL. The pre-focus group flood depth

map (Figure 3.7A) was produced by injecting flow hydrographs from a hydrologic model

into the channel network of the hydraulic model, so the mapped flooded area corresponds

to so-called fluvial flooding, or streamflows that exceed the capacity of the channel network

(Appendix C.2.4). In the post-focus group flood map, on the other hand, runoff (precipitation

minus infiltration) was computed for every numerical grid of the hydraulic model and routed

as overland flow. Hence, the mapped flooded area corresponds to so-called pluvial flooding,

or the combined effects of storm-water runoff and excess streamflow. Comparison between

Figures 3.7A and 3.7B reveals that the flood hazard can be significantly underestimated if

only fluvial flooding is considered, showing the importance of pluvial flooding (direct storm-

water runoff) in this system.

The baseline hazard maps based on fluvial flooding did not align with stakeholders’ expe-

rience, whereas the post-focus group flood hazard maps that account for pluvial flooding

clearly show accumulation of floodwater along roadways and locations adjacent to the main

channel. Notice that the pluvial hazard map illustrates ankle to waist deep flooding adjacent
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Figure 3.7: A) Pre-focus group Los Laureles flood depth map based on traditional coupling
of hydrologic and hydraulic models. B) Post-focus group Los Laureles flood depth map
based on routing storm-water runoff using the hydraulic model grid. Comparison between
A) and B) shows that traditional hydrologic-hydraulic model coupling can misrepresent flood
hazards in catchments where storm-water runoff is severe. We also present B) following the
stakeholder requests. Notice that A) is described by the AEP of the flood depths, whereas
B) is described by the amount of rainfall that caused the mapped hazard. The post-focus
group map also includes a qualatative/quantative legend, the location of the main channel,
and the watershed boundary.

to the main channel, whereas no flooding is predicted adjacent to the main channel in the

baseline map (Figure 3.7). Hence, this site calls for hydrologic modeling approaches that

resolve overland flow caused by rainfall. Pluvial flood hazard studies are still fairly uncom-

mon [Apel et al., 2016], yet there are several examples in the literature and methodological

advancements are growing [Nuswantoro et al., 2016, Blanc et al., 2012, Guerreiro et al., 2017,

Simões et al., 2015]. Maps produced by such methods have significant potential to support

FRM. For example, from an emergency management perspective, pluvial flood maps can

highlight streets and low-lying areas in the floodplain that are likely to become hazardous

during a severe rain storm, and from a planning and design perspective, pluvial maps can

identify areas in the floodplain with relatively poor drainage.

Notice also that the pluvial hazard map presents the data differently from the baseline map.

The pre-focus group map describes the mapped hazard by the exceedance probability of
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the flood depths, whereas the post-focus group map describes the mapped hazard as the

flood depths resulting from the corresponding rainfall depth and duration. In the latter

case, the exceedance probability is included but not emphasized. This may seem like a

minor difference, but end-users suggested that a description based on rainfall depth is much

more useful. Rainfall depths are commonly forecast and reported publicly, so the rainfall

totals are generally more relevant to end-users than frequency of occurrence or probability

of exceedance. End-users’ requests for the amount of rainfall and streamflow associated with

the hazard map point to the need to link mapped flooding scenarios to familiar reference

points.

Linking flooding scenarios to familiar reference points is difficult, however. Most flooding

scenarios are defined by probabilities which are intangible to many end-users, while the

significance of rainfall totals or volumetric flow rates can be unknown to users not familiar

with typical site conditions. A reference point requested by end-users which has the potential

to be accessible to a wide audience was the magnitude of the mapped flooding event relative

to historic measurements. Notice that the pluvial flood map (Figure 3.7B ) also describes the

rainfall event as “twice the largest observed”, which means the 1% AEP 24hr rainfall depth

is roughly twice the largest recorded at the nearest rainfall gage. Describing the flooding

scenario as “twice the largest observed” adds important context concerning the magnitude

of the mapped event by giving the impression of a rare scenario yet within the realm of

physical plausibility.

In addition to the flood hazards caused by storm-water runoff, LL and TRV stakeholders

were also concerned about the erosive potential of flowing water (Table 3.1 and 3.2). Erosion

potential was particularly relevant for the TRV and LL, since highly erosive soils lead to

continual dredging of flood control channels and maintenance of engineered sediment basins.

Accordingly, we produced maps that illustrate the erosive potential of various floods. Figure

3.8 shows an example of an erosion potential map we produced for the TRV stakeholders.
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Figure 3.8: Erosion potential map of the 1983 Tijuana River flood produced for the TRV
stakeholders. The contoured flood hazard variable is the maximum depth-averaged shear
stress predicted by the hydraulic model during the simulated flood event. Legend thresholds
were estimated from Fischenich [2001]. The map also includes the locations of levees and
fills, Tijuana River crossings, and the Tijuana river channel.

The erosion potential map contours the maximum depth-averaged shear stress predicted by

the hydraulic model during the course of the simulated flood. We contour shear stress to

illustrate erosion potential because shear stress is commonly used to model soil erosion and

design stream stabilization or restoration projects [Knapen et al., 2007, Fischenich, 2001].

The qualitative scale in Figure 3.8 that describes materials susceptible to erosion during

the simulated flood is based on the permissible shear stresses of different stream restoration

materials reported by Fischenich [2001]. Notice that the units of the erosion thresholds

are also included in the hazard map legend. Although it is unlikely that even technical

end-users can interpret the magnitude of different shear stress values off hand (i.e. Figure

3.8), the units provide the basis for the qualitative scale and improve credibility. The shear

stress values by themselves are fairly abstract, so the quantitative and qualitative scales

compliment each other quite nicely.

Natural resource managers, less often targeted as end users of flood hazard data, were an

audience that sought maps of erosion potential in this study. Most flood hazard maps are

tailored for public communication, strategic planning, emergency response, or insurance

113



www.manaraa.com

purposes [Meyer et al., 2012]. Yet for many locations, managing land use and controlling

erosion is essential to FRM, while erosion caused by flood waters can be the most damaging

aspect of a major flood [Luke et al., 2015]. Maps contouring shear stress and illustrating

erosion potential can be very useful for developing local land use strategies and suppressing

erosion. For example, natural resource managers could restrict sensitive land uses in areas

of the floodplain that are likely to experience relatively erosive flows. By overlaying the

predicted shear stresses with land use/land cover data, the erosion potential map could also

be used to highlight areas in need of armoring or erosion resistant vegetation.

Notice also that the example erosion potential map displays the shear stresses associated

with a hindcast of the 1983 Tijuana River flood, i.e., a historic flood. Stakeholders of both

sites were interested in hazard maps of historic flooding (Table 3.2), which we also find

particularly valuable due to their relevance to end-users and ease of communication. Maps

of historic floods are relevant precisely because they actually occurred; the map does not

need to communicate an abstract exceedance probability or frequency. In the case of historic

flood maps, the year of the flood or possibly the name of the storm can be used to describe

the flooding scenario. The 1983 Tijuana River flood was associated with a particularly strong

El Nino year, which several stakeholders recall. The 1983 flood also represents a relatively

frequent flood (about 20 year return period) which was deemed useful to be shown on a map

by end-users of both sites (Figure 3.6, Table 3.2).

Lastly, we present one additional flood hazard map produced in response to community

members’ concerns about stagnant water in the TRV. Standing water creates breeding sites

for mosquitos and a corresponding proliferation of mosquito-borne diseases such as West

Nile Virus, so it is an important public health consideration after a major flood [Kouadio

et al., 2012]. Figure 3.9 shows the depth of flood waters remaining in the TRV immediately

following recession of a flood with a peak flow rate of 2300 m3/s, assuming no evapora-

tion or infiltration. Therefore, the map should be interpreted as the standing water depth
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water depth

ankle - knee 0.11 - 0.45 m

knee - waist 0.45 - 1.0 m

waist - head 1.0 - 1.7 m

above head > 1.7 m

standing water depth after 2300 m³/s 

(triple the 1983 event or 1% AEP)

important features

Tijuana River crossings

levees and fills

Tijuana River channel (low flow)

0 1½ 3¾
km

±
Figure 3.9: Flood hazard map illustrating pooled water that did not freely drain following a
peak Tijuana River flow of 2300 m3/s, which has an estimated 1% AEP or 100 year frequency.
The flood depths shown on the map are the hydraulic model solution after the hydrograph
receded to baseflow conditions. The areas that do not freely drain are likely to experience
increased mosquito activity and exposure to pollutants following a major flooding event.

immediately following the flood.

The standing water map is unique relative to other hazard maps because it illustrates condi-

tions immediately after rather than during the event, and therefore represents a mechanism

of supporting of recovery efforts - a key component of the disaster management cycle [Khan

et al., 2008]. The standing water map could help authorities with mosquito abatement, de-

ployment of pumps, and strategic positioning of emergency shelters. Additionally, a stand-

ing water map can support floodplain planning by enabling enhanced assessments of public

health risks for proposed floodplain development projects.

3.7 Discussion and Recommendations

We acknowledge that the requested map scenarios and revisions of the TRV and LL end-users

do not represent all end-users of flood hazard data. However, for the sake of improving the

practice of flood hazard mapping, let us compare the end-users’ requests herein to previous
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studies and flood mapping guidelines in Europe, Australia, and the US. The majority of

end-user preferences from this study align with recommendations for improving flood hazard

maps from European studies by Meyer et al. [2012] and Hagemeier-Klose and Wagner [2009].

Concerning the presentation or communication of the mapped content, Hagemeier-Klose

and Wagner [2009] recommended that flood hazard maps should be linked to real time

information such as river stage, while Bell and Tobin [2007] questioned the effectiveness of

communicating floods based solely on probabilities. Both studies point to the need to link

the mapped flooding scenario to concrete reference points other than frequency or exceedance

probability. The need for tangible reference points was supported in this study by end-users’

requests for the rainfall totals, streamflow, and relative magnitude of the mapped scenario.

In flood mapping practice, however, communication of the mapped hazard is still very much

tied to probabilities.

The European handbook [Martini and Loat, 2007] states the title of the map should in-

clude the hazard parameter and probability, while the FEMA FIRM describes hazard zones

by AEPs only (i.e. Figure 3.2). Yet there is increasing evidence that these descriptions

are ineffective. Relatively little guidance is provided regarding the map legends as well,

which is another important aspect of communicating the mapped hazard. Legends are ei-

ther completely described by numerical values (i.e. depth of flooding in meters or feet) or a

qualitative flood severity zone described by terms such as “low” to “severe” (FEMA, 2014).

We recommend that future mapping guidance documents provide advice for different ways to

communicate the mapped hazard scenario and more complete legend descriptors. Alterna-

tives supported by this study include 1) providing qualitative and quantitative scales, and 2)

describing flooding scenarios by the flood magnitude (in corresponding scientific units), the

magnitude relative to an historic event, and finally the probability of the flood. The magni-

tude and probability of the flood provides relevant information for technical end-users, while

the magnitude related to an historic event is a tangible reference point for lay-persons. It is

our opinion that least emphasis should be given to the probability when describing mapped
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flooding scenarios. Not only are concrete references preferred for describing flood risk [Bell

and Tobin, 2007], but flood probabilities and corresponding frequencies are highly uncertain

[e.g. Appendices C.1.1 - C.1.3, Di Baldassarre et al., 2010, Kjeldsen et al., 2014, Merwade

et al., 2008, Merz and Blöschl, 2008, Stedinger and Griffis, 2008]. Indeed, all hazard variables

illustrated in flood maps are inherently uncertain, however it is remarkable that perhaps the

most uncertain and complex characteristic of floods is also the primary descriptor.

Uncertainties associated with flood mapping products are rarely quantified let alone com-

municated, and in this study, we did not address the important issue of communicating un-

certainty in flood maps to end-users. In one of the few studies that has explicitly addressed

communicating uncertainty in the FEMA FIRMs’ floodplain boundaries, Soden et al. [2017]

showed that providing end-users with contrasting information (i.e. the 1% AEP flood extent

versus an observed flooding extent) led to important flood hazard discourse and curiosity

regarding flood mapping methodology. While it may seem counterintuitive to purposefully

expose the limitations of floodplain delineation, such innovative communication strategies

force end-users to confront the deterministic standards that our institutions require for reg-

ulatory purposes. Explicit confrontation with the limits of science promotes contemplation

and is certainly worth further investigation in the context of flood hazard mapping and

communication.

Regarding desirable content of flood hazard maps, stakeholder preferences from this study

also align with previous work. Meyer et al. [2012] concluded that maps presenting flood

hazards at different probabilities is required, velocity information should be provided when

available, and the location of flood defenses and access routes should be integrated within

the hazard map. All of these recommended contents were requested by the TRV and LL

end-users. Hagemeier-Klose and Wagner [2009] also noted the importance of mapping more

frequent events than the 1% AEP flood, which was strongly supported by the results of

the survey (Figure 3.6). Thus, this study demonstrates consistency between the desired
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map content of end-users studied in the US, Mexico, and Europe. Flood mapping guide-

lines in Europe [Martini and Loat, 2007] and Australia [AEMI, 2013] generally recommend

producing this desired content. Guidelines either recommend or require the production of

hazard maps associated with different probabilities and even infrastructure failure scenarios.

Mapped data includes flooding extent, depths, velocities, and the depth-velocity product,

while some studies even provide shear stresses [Martini and Loat, 2007]. Specific guidance

is also provided for producing maps that support the FRM activities of distinct European

and Australian end-user groups.

Meanwhile in the US, flood mapping guidelines are fairly extensive and standardized for

producing the FEMA FIRM only [FEMA, 2016]. There is a lack of guidance and direction

available for producing flood hazard maps that support non-insurance aspects of FRM, such

as those specifically requested by end-users in this study. The required “non-regulatory”

data products of recent FEMA Risk MAP studies [FEMA, 2014] have significant potential

to support an expanded portfolio of actionable flood hazard maps in the US. For example,

the required velocity grids in Risk MAP studies can be post-processed to produce erosion

potential maps, while the required “flood severity grid” contains the depth-velocity data

necessary for products designed to support emergency response. We recommend that future

FEMA guidelines provide specific directives for producing non-regulatory flood hazard maps

tailored to specific FRM objectives including land-use planning, emergency management,

and public awareness. The content of flood hazard maps should also be expanded to include

pluvial flood hazards when appropriate.

Neither European, Australian, nor US flood mapping guidelines explicitly require or recom-

mend maps characterizing pluvial flood hazard, which were of keen interest to both LL and

TRV end-users. However, many EU member states have included pluvial flood hazard as-

sessments in response to the Floods Directive [Nixon et al., 2015]. The Australian technical

guidelines for engineers allude to direct rainfall models that can be used to produce pluvial
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hazard maps [McCowan, 2016], but because these techniques are relatively new, guidance

documents do not require the production of maps depicting the pluvial hazard or intense

storm-water runoff. Since techniques for estimating pluvial hazards continue to advance,

formal guidelines and requirements for mapping the pluvial hazard zone should be devel-

oped, especially in the US. As demonstrated by end-user requests in this study - and the

largely pluvial nature of the flooding disaster caused by Hurricane Harvey in the US - pluvial

flooding can dominate in urban areas and needs to be considered in future mapping efforts.

3.8 Conclusions and Future Directions

Two-dimensional (2D) flood hazard models developed for the Tijuana River Valley (TRV)

and Los Laureles (LL) on both sides of the US-Mexico border supported the co-development

of flood hazard maps responsive to end-user management needs. 2D modeling by engineers

produced a set of baseline maps that were further refined through end-user focus groups that

triggered additional modeling scenarios and map revisions.

This study revealed general consistency between the mapping needs of studied end-users

in the US and Mexico with those reported in European studies and guidelines published in

Australia. For example, mapping requests included scenarios with different probabilities and

even infrastructure failure scenarios, and end-users also requested maps of hazard variables

beyond traditional flood extent, such as velocities and standing water. This study also

revealed several important flood hazard mapping requests relevant to other sites:

• Flood intensity scales (e.g., depth, force or shear stress) that frame the mapped infor-

mation both quantitatively and qualitatively. The quantitative scale meets end-user

needs for a technical reference point, while the qualitative scale meets end-user needs

to easily interpret the mapped information.
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• Flood scenario descriptions that report both the magnitude of the flood in terms of

rainfall or streamflow amounts and also the flood magnitude relative to an historic

event. Use of concrete scenario descriptions increases the utility and relevance of

mapped information across different end-users of flood hazard maps.

• Flood hazard maps that depict the erosion potential of flood waters. Erosion potential

maps support end-user needs for managing sediment.

• Flood hazard maps that depict standing water following the flood. Standing water

maps support recovery planning and public health concerns.

• Flood hazard maps that depict storm-water runoff or pluvial flood hazards. Baseline

flood hazard maps depicted fluvial flooding hazards only, and after end-user focus

groups revealed a deficiency in usefulness, the need for a pluvial flood hazard modeling

approach was recognized and implemented. Characterizing pluvial flood hazards is

extremely important for urbanized sites with poor drainage.

Of course, the stakeholder preferences herein must be viewed cautiously, since focus group

participants do not represent all end-users of flood hazard data. The primary limitation

of this study is the limited number of focus group participants (55 total) and narrow ge-

ographic scope. Co-production efforts via focus groups acknowledge that community-level

knowledge (and mapping preference) varies from locality-to-locality, underscoring how flood

hazard knowledge should not be a “one-directional” process but an iterative learning ap-

proach that breaks down information gaps between experts and lay users in specific places

- thus improving risk communication at the local level. They also produce actionable map-

ping information useful for reducing flood risks [Spiekermann et al., 2015, Moel et al., 2009].

Indeed, restricted sample size and geographic scope is a common caveat of flood communica-

tion and mapping preference studies (e.g Hagemeier-Klose and Wagner [2009], Meyer et al.

[2012]).
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In future studies, sample size limitations may be overcome by taking advantage of online

information systems to present flood hazard data. Online formats offer the opportunity

for causal experiments - do different hazard variables make a user more (or less) likely to

seek vulnerability reduction measures? How do different presentations of uncertainty in

mapped data influence end-users’ desire to seek further information? These questions could

be answered with so called “A/B” testing, where subjects are presented different web pages

and their interactions on the web site are recorded. Our current knowledge of flood mapping

preferences and hazard perceptions is based upon empirical studies with relatively small

samples [Kellens et al., 2013]. What can “big data” tell us about how end-users respond to,

and interact with, flood hazard data?

While online information systems offer avenues for new research, they also provide a medium

for presenting an expanded portfolio of hazard maps. Relative to the EU and Australia,

flood mapping practice in the US has the greatest opportunity for expansion. Funding for

flood mapping in the US remains limited [Traver, 2014], however it is relatively inexpen-

sive to produce additional mapping products from models that are already used to produce

Flood Insurance Rate Maps. Furthermore, the availability of free 2D hydraulic modeling

software (HEC-RAS 5.0) and increasing abundance of metric resolution topographic data

provides practitioners with the means to produce flood hazard data that was previously

cost-prohibitive [Sanders, 2017]. While flood mapping methods and data continue to im-

prove - additional criteria must also be addressed to provide decision-makers and citizens

with actionable information. To be actionable, map information must help decision-makers:

1) understand vulnerability of properties from flooding; and, 2) select actions that miti-

gate or reduce this vulnerability [Demeritt and Nobert, 2014, McNutt, 2016, Feldman et al.,

2008]. By fully utilizing flood modeling technologies and developing innovative communi-

cation strategies, flood hazard maps can more effectively support first responders, natural

resource managers, and local residents with the information necessary to manage and respond

to flood hazards.
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3.9 Data Availability Statement

The University of California’s guidelines for maintaining the privacy and confidentiality of

human subjects state that data obtained from human subjects should only be accessible

on a “need to know” and “minimum necessary” standard. Thus, the transcripts of focus

groups conducted in this study are not publicly available. If an interested researcher wishes

to review transcripts, please contact the corresponding author with 1) data requests and 2)

reasoning for requesting the data.

All of the hazard maps (and several not presented herein) are available to view on an inter-

active system found here:

FloodRISE (2017). Tijuana River Valley Flood Hazards. University of California, Irvine.

https://bit.ly/floodrise_TRV

FloodRISE (2017). Los Laureles Flood Hazards. University of California, Irvine. https:

//bit.ly/floodrise_GC

Data that was used to create the hazard maps includes elevation, streamflow, ocean water

level, and precipitation data. The elevation data is held by the County of San Diego and

could be made available via requests to the corresponding author. The streamflow, water

level, and precipitation data is available here:

International Boundary and Water Commission (1960 - 2006). Flow of the Colorado River

and other Western Boundary Streams and Related Data. Department of State, USA. https:

//ibwc.gov/Water_Data/water_bulletins.html

National Oceanic and Atmospheric Administration (1924 - 2008). Observed Water Levels at

9410230, La Jolla CA. Department of Commerce, USA. https://www.tidesandcurrents.

noaa.gov/waterlevels.html?id=9410230
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Department of Public Works, Flood Control Section (2003). San Diego County Hydrology

Manual. County of San Diego. http://www.sandiegocounty.gov/content/dam/sdc/dpw/

FLOOD_CONTROL/floodcontroldocuments/hydro-hydrologymanual.pdf
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Jan Kyselỳ, Jan Picek, and Romana Beranová. Estimating extremes in climate change
simulations using the peaks-over-threshold method with a non-stationary threshold. Global
and Planetary Change, 72(1):55–68, 2010.

Eric Laloy and Jasper A Vrugt. High-dimensional posterior exploration of hydrologic models
using multiple-try dream (zs) and high-performance computing. Water Resour. Res., 48
(1), 2012a.

Eric Laloy and Jasper A Vrugt. High-dimensional posterior exploration of hydrologic mod-
els using multiple-try dream (zs) and high-performance computing. Water Resources
Research, 48(1), 2012b.

Jonathan R Lamontagne, Jery R Stedinger, Timothy A Cohn, and Nancy A Barth. Robust
national flood frequency guidelines: What is an outlier? In Proc. World Environmental
and Water Resources Congress, ASCE, 2013.

Geert Lenderink and Erik Van Meijgaard. Increase in hourly precipitation extremes beyond
expectations from temperature changes. Nature Geoscience, 1(8):511, 2008.

Carlos HR Lima, Upmanu Lall, Tara J Troy, and Naresh Devineni. A climate informed model
for nonstationary flood risk prediction: Application to negro river at manaus, amazonia.
Journal of Hydrology, 522:594–602, 2015.

Harry F Lins and Timothy A Cohn. Stationarity: wanted dead or alive? 1, 2011.

J. Lopez and F. Frances. Non-stationary flood frequency analysis in continental Spanish
rivers, using clmate and reservoir indices as external covariates. Hydrol. Earth Syst. Sci.,
17, 2013. doi: 10.5194/hess-17-3189-2013.

Adam Luke, Brad Kaplan, Jeff Neal, Jeremiah Lant, Brett Sanders, Paul Bates, and Doug
Alsdorf. Hydraulic modeling of the 2011 new madrid floodway activation: a case study on
floodway activation controls. Natural Hazards, 77(3):1863–1887, 2015.

Adam Luke, Jasper A Vrugt, Amir AghaKouchak, Richard Matthew, and Brett F Sanders.
Predicting nonstationary flood frequencies: Evidence supports an updated stationarity
thesis in the united states. Water Resources Research, 53(7):5469–5494, 2017.

Adam Luke, Brett F Sanders, Kristen A Goodrich, David L Feldman, Danielle Boudreau,
Ana Eguiarte, Kimberly Serrano, Abigail Reyes, Jochen E Schubert, Amir AghaKouchak,
et al. Going beyond the flood insurance rate map: insights from flood hazard map co-
production. Natural Hazards and Earth System Sciences, 18(4):1097, 2018.
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Appendix A

The Log-Pearson Type III

Distribution

A record of block maxima discharges, {Q1, ...,Qn}, follows the LPIII distribution if random

variable X = log10(Q) is distributed according to the PIII distribution. The PIII distribu-

tion parameters are defined by μ, σ, and γ, which represent the mean, standard deviation,

and skewness of X, respectively. The probability density function, f(x), and cumulative

distribution function, F (x), are defined as

f(x) =
(x− ξ)ε−1e−(x−ξ)/β

βεΓ(ε)
(A.1)

F (x) = G

(
ε,
x− ξ

β

)
/Γ(ε) (A.2)
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where ε = 4/γ2, β = 1
2
σγ, and ξ = μ− 2σ/γ [Hosking and Wallis, 1997]. If γ > 0, then ξ is

a lower bound (ξ ≤ x < ∞). If γ < 0, then ξ is an upper bound (−∞ ≤ x < ξ) and

f(x) =
(ξ − x)ε−1e−(ξ−x)/β

βεΓ(ε)
(A.3)

F (x) = 1−G

(
ε,
ξ − x

β

)
/Γ(ε) (A.4)

In the special case where γ = 0, the distribution is normal and the range of x is−∞ < x < ∞.

Here, Γ(·) and G(·) represent the gamma and incomplete gamma functions, respectively.

An analytical form of the inverse PIII distribution, x(F ), does not exist, thus it is often

approximated to calculate discharges associated with specific quantiles, p, or return periods,

T

log10(qp) = μ+ σKp(γ) (A.5)

Kp(γ) =
2

γ

(
1 +

γnp

6
− γ2

36

)3

− 2

γ
(A.6)

where log10(qp) represents the p
th quantile of the LPIII distribution, and np is the p

th quantile

of the standard normal distribution. Kp(γ) is the frequency factor, or the pth quantile of the

PIII distribution with mean 0, standard deviation of 1, and shape γ. The frequency factor is

approximated by the Wilson and Hilferty transformation in Equation A.6, which is accurate

for −2 < γ < 2 and 0.01 ≤ p ≤ 0.99 or 1.01 ≤ T ≤ 100 [Kirby, 1972, Reis Jr. and Stedinger,

2005].

Because of the numerical difficulties in evaluating Γ(·) at large values of ε (γ values near

0), evaluation of the analytic PIII is often avoided. In this study, evaluation of the analytic

PIII distribution near γ = 0 is accomplished using Chebyshev approximations for loge[Γ(·)],
which do not require evaluation of Γ(·) [Cody and Hillstrom, 1967]. Conveniently, loge[Γ(·)]
can be computed using the MATLAB R© function gammaln(), and evaluating the analytic
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PIII pdf is achieved in the log-space.
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Appendix B

Bayesian Parameter Estimation of the

NS-GEV Model

We use the Bayesian approach for parameter estimation in this study. The Bayesian approach

for parameter estimation is advantageous for several reasons. First, Bayesian parameter esti-

mation produces the joint distribution of parameter values rather than point estimates. The

joint distribution is very useful for uncertainty analysis, since we can sample from the joint

distribution to characterize the parametric uncertainty of the statistical model. Secondly,

Bayesian parameter estimation allows us to stabilize parameter estimates by incorporating

information other than the data in the estimation procedure. In the case of NEVA, authors

have shown that maximum likelihood estimation can lead to biased estimates of the shape or

tail parameter [El Adlouni et al., 2007], and Mudersbach and Jensen [2010] called for more

accurate estimation procedures in the context of NEVA applied to extreme ocean levels.

The Bayesian approach allows us to improve parameter estimation via the informative prior.

The following section briefly outlines our application of Bayesian methods to estimate the

parameters of the NS-GEV model (Equations 2.5, 2.6).
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In this study, we are interested in inferring the NS-GEV parameters, θ = {μo, σ, ξ}. The

time varying location of the NS-GEV model μi is formulated as a function of the parameter

μo and the covariate ΔMSLi, where μi = μo +ΔMSLi. The covariate ΔMSLi, or the change

in mean sea level from the year 2000, is calculated from the historic record during the fitting

period and obtained from Kopp et al. [2014] when the model is used for prediction. For the

fitting procedure, we use a centered 19-year moving average of observed (hourly) water levels

to define mean sea level. We then take the difference between mean sea level in year i with

mean sea level in year 2000 to define a vector of ΔMSLi values. With the covariate vector

defined, we apply Bayes’ theorem to obtain the posterior distribution of parameter values

given the data y and vector of covariate values x

p(θ|y,x) ∝ p(θ)L(θ|y,x) (B.1)

where y is the vector of annual maximum water levels, p(θ) is the prior probability density

of the parameter values, and L(θ|y,x) is the likelihood of the parameter values given the

data and covariate vector. Notice that we do not include the marginal likelihood or evidence

term (the denominator of Bayes’ theorem) in Equation B.1, since parameter inference can be

made from the un-normalized density when Markov Chain Monte Carlo (MCMC) methods

are used to sample from the posterior. Producing a posterior sample of θ with MCMC

methods requires specification the prior density and likelihood function.

The likelihood function quantifies the probability density of y according to the statistical

model with parameterization θ and vector of covariate values x. In this study, the likelihood

function is defined as

L(θ|y,x) =
N∏
i=1

p(yi|θ, xi) (B.2)

where i is an index of years in the historic record, N is the number of observations in the
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annual maximum record, yi denotes the i
th observation in the data vector y, and xi denotes

the ith value in the covariate vector x. The term p(yi|θ, xi) is the probability density of

observation yi, which is given by the GEV probability density function evaluated at yi with

parametrization θ and covariate value xi. Recall that μi = μo + xi, which causes the

parameters of the GEV distribution change with xi values. Thus, Equation B.2 is evaluated

at time-varying parameters. The GEV probability density function is given by Coles [2001].

The prior represents an analyst’s knowledge of θ before any data is collected, which is

described mathematically by the joint probability density of the parameters within θ. The

prior is useful for estimating the parameters of an extreme value distribution, since the

prior allows us to incorporate information other than the limited historic data record in the

inference of distribution parameters. In this study, we use uninformative priors on μo and σ

with an informative marginal prior specified on ξ

p(ξ) = N (ξst, σst) (B.3)

where N (ξst, σst) denotes the normal distribution with mean ξst and standard deviation σst.

In this study, ξst is the maximum likelihood estimate of ξ at the Los Angeles gage reported by

Zervas [2013b], which was obtained by fitting a stationary GEV distribution to the historic

data. Here, σst is the standard deviation of the normal distribution with mean ξst and 95%

confidence interval reported by Zervas [2013b].

We use uninformative priors on μo and σ which means that inference of these parameters

is based on the data alone. The marginal priors for μo and σ and were specified as a

uniform distribution, U(a, b), where a and b represent the lower and upper bounds of the

uniform priors, respectively. The uniform distributions assign equal prior density to all values

within the bounds, and thus the prior does not provide information about the value of these

parameters if the bounds are large enough to encompass realistic values. The joint prior
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Table B.1: NS-GEV parameters and marginal prior distributions. The multivariate prior
density is simply the product of the marginal distributions evaluated at a proposed parameter
combination.

Parameters Units Prior lower bound upper bound mean std.
μo m U(a, b) -10 10 − −
σ m U(a, b) 0 2 − −
ξ − N (ξst, σst) − − -0.17 0.06

density of θ is simply the product of the marginal distributions, or p(θ) = p(ξ)p(μo)p(σ).

Table B.1 provides the NS-GEV parameters and prior distributions. We note that using an

informative prior on just the shape parameter has be coined “generalized maximum likelihood

estimation” (GLE) in the hydrologic literature. El Adlouni et al. [2007] showed that GLE is

preferable to maximum likelihood estimation in the context of NS-GEV parameter inference,

and Martins and Stedinger [2000] reached the same conclusion in the context of stationary

GEV parameter inference.

With the prior and likelihood functions defined, we then use MCMC methods to produce a

posterior sample of parameter values. Sampling methods such as MCMC provide a sample

of θ where the density of parameter values is proportional to the product of the likelihood

function and prior density. For a complete description of posterior sampling via Monte

Carlo simulation, please see Section 2 of Vrugt [2016]. In this study, we use the DiffeRential

Evolution Adaptive Metropolis algorithm (DREAM(ZS)) to generate samples of the target

distribution [Vrugt et al., 2009, Laloy and Vrugt, 2012a], and assess convergence through the

R̂-statistic of Gelman and Rubin [1992]. The MCMC procedure utilized three Markov chains,

each including 8000 generations of θ. Fifty percent of the generations from each chain were

discarded as burn-in, and the remaining generations were combined into a single matrix. This

procedure results in a posterior sample size of 12,000 generations of θ. Parameter inference

and random sampling of NS-GEV parameters is now based on the posterior samples of θ

produced by the MCMC algorithm.
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Figure B.1: Posterior sample of NS-GEV parameter values. The black lines show the prior
density, and the red histograms illustrate the posterior density. The crosses denote the
maximum a posteriori parameter (MAP) estimate, which we use to illustrate the NS-GEV
model in Figure 2.1. We sample parameter values from the red histograms in the Monte
Carlo experiments.

Figure B.1 shows the posterior density of parameter values obtained from the fitting proce-

dure (red histograms) compared to the prior density (black lines). We note that the posterior

density is calculated empirically from the posterior sample. The black crosses denote the

maximum a posteriori (MAP) estimate of θ, which is the parameter combination that max-

imizes Equation B.1. The MAP estimate is the parameter combination used to illustrate

the NS GEV model in Figure 2.1. Notice that the shape parameter ξ is negative [Zervas,

2013b], which indicates that the extreme value distribution has an upper bound. Future work

could repeat the Monte Carlo experiment with an un-bounded or heavy-tailed distribution

to study the sensitivity of R(z, t) and T (z) estimates to distribution tails. In this study, the

posterior sample is used to characterize the parametric uncertainty of the NS-GEV model

in the Monte Carlo experiments (i.e Step 1c from Section 2.3.5).

To randomly sample from the posterior distribution, there is no need to fit a distribution

to the posterior sample of θ generations. Instead, for each trial in the Monte Carlo Ex-

periment, we generate a random integer value from the uniform distribution on the set

{1, 2, 3....11998, 11999, 12000}. Recall that 12,000 is the number of θ generations in the
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posterior sample. The random integer is used as a index to select a θ generation from the

posterior sample, which parameterizes the NS-GEV model in the proceeding steps of the

Monte Carlo Experiment. The frequency that different θ values appear in the posterior

sample expresses the posterior probability of θ values.
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Appendix C

Flood Hazard Mapping Methodology

The flood hazard maps presented in this study resulted from three distinct tasks: flood

frequency analysis (FFA), hydrologic and hydraulic modeling, and post-processing of model

output. Generally speaking, FFA estimates the recurrence interval of rare flooding events,

while hydrologic and hydraulic modeling predicts the hazards associated with simulated

floods (depths, velocities, extents, etc.). In this study, post-processing methods are used to

combine the results of multiple simulations onto a single map. The following sections outline

our FFA, hydraulic modeling, and post-processing methods so that the interested modeler

can produce the hazard maps presented herein.

C.1 Flood Frequency Analysis

FFA is complicated in the coastal zone due to the multiple causes or “drivers” of flooding.

In this study, we mapped flooding caused by extreme ocean levels, streamflow from the

Tijuana (TJ) River, and precipitation over Los Laureles and Smuggler’s gulch watersheds

(Figure 3.1). The presence of multiple flood drivers often warrants a multivariate approach
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Table C.1: Pearson’s correlation coefficient matrix between the three drivers of flooding
considered in this study. The numeric values in the table describe the correlation between
the variables in the row and column headings. Correlation coefficients were determined using
de-trended tide gage data at La Jolla (NOAA station 9410230), precipitation measurements
from the San Diego International Airport (NOAA network ID GHCND:USW00023188), and
TJ River streamflow measurements at the US/MX border recorded by the International
Boundary and Water Commission.

Ocean Level (daily mean) TJ Stream flow (daily mean) Precipitation (24 hr sum)
Ocean Level (daily mean) 1 0.12 0.21

TJ Stream flow (daily mean) 0.12 1 0.17
Precipitation (24hr sum) 0.21 0.17 1

for FFA [Salvadori and De Michele, 2013]. Under this approach, multivariate extreme value

analysis (EVA) is used to estimate the probability of scenarios where multiple extremes occur

simultaneously. However, we did not conduct multivariate EVA in this study because of the

low correlation between flood drivers and the lack of emergent flood hazards caused by the

joint occurrence of extremes.

Table C.1 presents the Pearson’s correlation coefficient matrix between the flood drivers

considered herein. The relatively low correlation is somewhat surprising but understandable.

Extended periods of above average rainfall in the upper TJ River Watershed cause large

streamflow events, whereas relatively short-lived coastal storm systems can elevate ocean

water levels and lead to intense precipitation. The low correlation between flood drivers

demonstrates that the simultaneous occurrence of extreme events would be especially rare.

Perhaps more importantly, hydraulic model sensitivity analysis revealed that predicted flood

depths, extents, and velocities are insensitive to the joint-occurrence of extremes in this

system. For example, flood depths predicted by the hydraulic model are not sensitive to the

downstream ocean level during large TJ River floods. The lack of “sufficient” correlation

between drivers and the hydraulic model’s insensitivity to the joint occurrence of extremes

allows us to consider the flood drivers independently and use univariate EVA for frequency

analysis.
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Figure C.1: A) Annual maximum discharge record of the TJ River. Only flood peaks
post-channelization were used for PIII parameter inference. B) Flood frequency estimates
derived from the PIII distribution fitted to the log-transformed discharge data from 1979 -
2006. Notice the large variance in flood frequency estimates.

C.1.1 Tijuana River Flood Frequency Analysis

FFA of TJ River flows was based on a Pearson Type III (PIII) distribution fitted to the

historic record of log-transformed annual maximum discharges. This approach is consistent

with the recommended FFA methodology in the US [Hydrology Subcommittee, 1982]. The

data record originated from TJ River flow measurements at the US/MX border reported

by the International Boundary and Water Commission. To infer the parameters of the PIII

distribution, we used the Bayesian parameter estimation technique described by Luke et al.

[2017] where an informative prior was used to incorporate regional information about the

skewness of the PIII distribution. For the TJ River, parameter estimation was complicated

by signs of nonstationarity in the historic record, or time variant statistical properties of the

annual maximum discharge data.

Figure C.1A shows the full data record at the US/MX border. At the time of this study,

data was not available after 2006. The black line in Figure C.1A denotes the year when

the TJ River channelization was completed, which appeared to alter the mean and standard
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deviation of the flood peaks. Indeed, the pre-channelization distribution is different from the

post-channelization distribution at the 0.05 significance level according to the two-sample

Kolmogorov-Smirnov test [Massey Jr, 1951]. Due to the apparent change in the distribution

of flood peaks following channelization, we did not use data prior to 1979 for estimation of

the PIII parameters. The choice to omit data prior to channelization creates a relatively

small sample size for parameter estimation and leads to large variance in the estimated return

periods (Figure C.1B). Assuming stationarity following the channelization, the return periods

in Figure C.1B are simply the inverse of the annual exceedance probabilities associated with

the return levels on the y axis. If the pre-channelization flood peaks are included in the

frequency analysis, we risk bias in the parameter estimates and resulting return periods.

Notice also that the empirical frequency curve shown in Figure C.1B appears to change

shape near the 5 year return period level. We attribute this to the considerable influence of

upstream reservoirs on large TJ River flows. Spillway discharges occurred during four of the

annual maximum events from 1979 - 2006, but did not affect the majority of the relatively

small, run-off driven annual maximum events. The various flood generating mechanisms and

the change in the shape of the empirical frequency curve both indicate that the distribution

of flood peaks is not the same for small and large annual maximum events. This causes a

poor fit of the PIII distribution to the data in the modern period of record and creates even

more variance in the frequency estimates. It is unlikely that the variance can be significantly

reduced without expanding the sample size through watershed modeling and simulation of

peak flows, which was outside the scope of this study. It is very important to note that

exceedance probabilities and corresponding frequency estimates based on the historic TJ

River discharges alone are unavoidably uncertain.
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Table C.2: Most likely estimates of exceedance probabilities associated with extreme ocean
levels, TJ Stream flow, and precipitation. These values were used as boundary conditions
for the hydrologic and hydraulic modeling.

Annual Exceedance Probability (2015) Ocean Level (m, NAVD88) TJ Stream flow (m3/s) Precipitation (24 hr sum, mm)
0.01 2.42 2333 101.6
0.02 2.40 1420 88.9
0.05 2.38 688 81.3
0.10 2.36 369 63.5
0.20 2.34 178 50.8
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Figure C.2: A) Annual maximum ocean levels compared to annual mean ocean levels
recorded at the La Jolla tide gage in CA, USA. The black line shows the fitted nonsta-
tionary GEV distribution during the year 2015. B) Exceedance probabilities of extreme
ocean levels derived from the 2015 GEV distribution. We do not show return periods on the
x axis because exceedance probabilities are expected to change as mean sea level increases.

C.1.2 Extreme Ocean Level Frequency Analysis

Extreme ocean levels near the TRV also showed signs of nonstationarity in the historic data

record. Figure C.2A shows the annual maximum compared to the annual mean ocean levels

recorded at the La Jolla tide gage in CA, US. There is a statistically significant trend in

both the annual maximum and mean data at the 0.05 significance level, according to the

Man-Kendall trend test for monotonic trends [Mann, 1945, Kendall, 1976]. The persistent

trend in ocean levels is not surprising, however it does complicate EVA. In this study, we

explicitly modeled the change in extreme ocean levels using a nonstationary, generalized

153



www.manaraa.com

extreme value (GEV) distribution

X ∼ GEV(μt, σ, ξ) (C.1)

where the random variable X is the annual maximum ocean level, and σ and ξ denote the

scale and shape parameter of the GEV distribution, respectively. The time-variant location

parameter, μt, is formulated as a function of changes in mean sea level

μt = ΔMSLo + μo (C.2)

where ΔMSLo is the change in annual mean sea level relative to the mean during the 1983 -

2001 tidal epoch, and μo is a constant off-set between the location of the GEV distribution

and mean sea level. This model was proposed by Obeysekera and Park [2012] to provide a

method for synthesizing extreme value statistics with sea level rise scenarios. We estimated

the parameters of the GEV model using Bayesian parameter inference, again with an infor-

mative prior on the shape parameter, ξ. The prior on ξ was specified as a normal distribution

centered at the La Jolla gage estimate of ξ reported by Zervas [2013a]. Following parameter

estimation, exceedance probabilities of extreme ocean levels are estimated as a function of

change in mean sea level.

Figure C.2B shows extreme water levels versus exceedance probabilities obtained from the

fitted GEV model in the year 2015. Notice that along the x axis, we no longer use return

periods to describe the frequency of extreme ocean levels. The common definition of a return

period relies on the assumption that exceedance probabilities are time-invariant, which is

very unlikely due to anticipated changes in future mean sea level. For our hazard mapping

purposes, we used the nonstationary model to estimate the exceedance probabilities of ex-

treme ocean levels associated with present day mean (2015) sea level. The fitted model could

also be used to estimate exceedance probabilities associated with future sea levels by using
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sea level rise projections to define ΔMSLo.

C.1.3 Precipitation Frequency Analysis

Precipitation frequency estimates over the Los Laureles and Smuggler’s Gulch catchments

were obtained from isopluvial maps reported by Sholders [2003]. The isopluvial maps provide

6 hour and 24 hour rainfall depths associated with different return periods. Rainfall depth

and frequency estimates were taken from the isopluvial lines nearest to Smuggler’s Gulch and

Los Laureles catchments. To summarize and conclude the results of our frequency analysis,

Table C.2 includes the magnitude (return level) and exceedance probabilities for the three

drivers of flooding considered herein. The values in Table C.2 were used as model forcing

for the hydrologic and hydraulic modeling.

C.2 Hydrologic and Hydraulic Modeling

In this study, hydrologic modeling was conducted to transform the precipitation totals over

the Los Laureles and Smuggler’s Gulch catchments (hereafter “the catchments”) into flood

hydrographs for input to the hydraulic models. Two hydraulic models were developed in

this study: one covering the spatial extent of the Los Laureles Catchment, and the other

including the Tijuana River Valley.

C.2.1 Hydrologic Modeling

The hydrologic models for the catchments were developed using (1) the Soil Conservation

Service (SCS) curve number method to characterize precipitation losses from interception

and infiltration [Ponce and Hawkins, 1996], (2) the SCS unit hydrograph method to trans-
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form excess precipitation into a hydrograph [NRCS, 1985], and (3) a 24-hour nested storm

hyetograph (based on the totals in Table C.2) to define the rainfall distribution within the

24-hour simulation [Sholders, 2003]. The channel flow within the catchments was routed be-

tween sub-basins using the kinematic wave model described by [USACE, 2000]. Watershed

areas, channel geometries, and basin slopes were estimated from a digital elevation model

(DEM) with a 0.76 m (2.5 ft) horizontal resolution, which originated from a 2014 liDar

Survey conducted by the County of San Diego. Curve numbers were defined based on land

use data from the University of Arizona Remote Sensing Center and literature values from

USACE, 2000. Unfortunately, flow measurements within or at the catchment outlets were

not available at the time of the study, so hydrologic model calibration was not possible.

C.2.2 Los Laureles Hydraulic Model

Flows in Los Laureles were routed using BreZo [Sanders et al., 2010, Kim et al., 2014], which

solves the shallow water equations using a 2D finite volume scheme optimized for applications

involving natural topography. BreZo operates on an unstructured grid of triangular or

quadrilateral cells, which allows for variable mesh resolution and geometries throughout

the modeling domain. The Los Laureles modeling domain covers the entire area of the Los

Laureles Watershed (Figure 3.1), with an average cell area of 13.4 m2. The Los Laureles mesh

was generated using Gmsh [Geuzaine and Remacle, 2009] to create a structured, quadrilateral

grid along channels and a mixed-mesh of triangular and quadrilateral cells in the floodplain.

The structured, quadrilateral portion of the mesh was aligned with trapezoidal channels and

small gutters along streets within Los Laureles. We used GPS measurements of channel bank

and bottom elevations to define the elevation of mesh nodes aligned with channels. Mesh

node elevations within the floodplain were based on the DEM from the 2014 liDAR Survey.

Resistance was characterized using spatially-varying Manning’s n values, where a value of

0.015 s/m(1/3) was used for concrete surfaces, and 0.035 s/m(1/3) was used for natural areas
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of the floodplain. Again, no flow or stage measurements existed within Los Laureles at the

time of the study, so the hydraulic model is un-calibrated.

C.2.3 Tijuana River Valley Hydraulic Model

Tijuana River Valley (TRV) flows were also routed using BreZo [Sanders et al., 2010, Kim

et al., 2014]. The TRV mesh was generated using Triangle [Shewchuk, 1996], resulting in a

triangular mesh of variable resolution throughout the modeling domain. The mesh domain

is bounded by the Pacific ocean to the West, Imperial Beach to the North, and the elevated

terrain near the US/MX border to the South (Figure 3.1). Mesh edges were aligned with the

TJ River channel banks and small levee systems found within the TRV. The resolution of the

mesh is highly variable; cells overlapping small channels in the Estuary were assigned an area

of 36 m2, whereas relatively homogeneous regions in the floodplain were assigned a cell area

of 100 m2. Mesh node elevations within the floodplain were also based on the DEM from the

2014 liDAR Survey. Flow resistance was characterized using spatially varying Manning’s n

values, where the Manning’s n value was determined based on land use data. Values ranged

from 0.011 s/m(1/3) for the TJ River channel, to 0.1 s/m(1/3) for densely vegetated, riparian

areas.

The TRV hydraulic model was validated using observations of water surface elevations in

the Estuary and the TJ River at the US/MX border. Observations of Estuary water levels

and TJ River stage were obtained from the National Estuarine Research Reserve System and

the International Boundary and Water Commission, respectively. In the TJ River channel,

comparison of modeled stage to observed stage yielded a root mean square error of 0.25 m

for TJ river flow rates of 0 - 1040 m3/s. The error in modeled water surface elevations is

most likely due differences in the sediment level in the TJ channel between the observed

and modeled events. To validate the downstream region of the TRV model, we simulated
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a 2-week tidal cycle at the ocean boundary and compared modeled water surface elevations

to those observed during the same 2-week period. Over the 2 week period, the root mean

square error between observed and modeled water surface elevations was 0.07 m. The error

in modeled water surface elevations in the Estuary is within the error of the topographic

data. Thus, the TRV hydraulic model accurately reproduces water surface elevations for

both riverine and tidal forcing.

C.2.4 Hydraulic Model Forcing

Developing hydraulic modeling scenarios appropriate for hazard mapping requires careful

consideration. For the TRV hydraulic model, the presence of multiple flood drivers compli-

cates the development of scenarios that represent the exceedance probabilities in Table C.2.

This is not an issue for the Los Laureles hydraulic model, since only one driver of flooding

was considered in Los Laureles. From a hazard mapping perspective, the challenge in Los

Laureles is coupling the hydrologic model with the hydraulic model. Our approaches for

addressing both of these issues are outlined in this section.

In this study, the Los Laureles hydraulic model was coupled with the hydrologic model

differently before and after end-user focus groups. Prior to the end-user focus groups, the

hydrographs generated by the hydrologic model described in Section C.2 were input to the

Los Laureles hydraulic model as point-sources of discharge at the sub-watershed outlets

within the hydrologic modeling domain. Under this approach, all effective runoff reaches the

storm water channels without explicit flow routing in the out-of-bank areas. As discussed in

Section 3.6.3, this is not ideal for hazard mapping because only areas susceptible to channel

overtopping appear on the hazard map. After end-user focus groups, we added the effective

precipitation directly to the 2D modeling grid. Since the 2D modeling grid covers the entire

Los Laureles catchment area, there was no need to add fluvial discharges to the modeling
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domain using boundary conditions or point-sources. We used the SCS curve number method

to estimate the effective precipitation from the rainfall hyetographs, where each 2D model

cell was assigned a curve number based on land-use. The effective rainfall hyetographs were

added to the 2D grid as spatially distributed source of discharge. Flow was routed for

partially wet cells using kinematic wave theory with the friction slope approximated using

Manning’s equation, whereas flow was routed using the 2D shallow water equations for fully-

wetted cells. Explicit routing of overland flow results in the hazard maps similar to those

shown in Figure 3.7, which we consider more useful based upon the results of our end-user

focus groups.

To address the issue of multiple flood drivers in the TRV, we simulated the extreme conditions

of each driver separately with the TRV hydraulic model. It is important to note that if

multiple extremes are modeled simultaneously, for example a scenario where an abnormal

ocean level coincides with an extreme TJ River flood, the resulting flood hazard would not

be associated with the exceedance probabilities of the individual events. Thus, during the

TJ River flood simulations, the downstream (ocean) boundary conditions were defined as

mean-tidal cycles, and the flows from the catchments were set to zero. To define the the

TJ River flow hydrographs, we scaled the hydrograph associated with the 1980 flood to

the peak discharges in Table C.2. These scaled hydrographs served as boundary conditions

at the upstream boundary of the modeling domain. The resulting TJ river flood hazards

predicted by the hydraulic model are associated with the exceedance probabilities defined in

Table C.2. The extreme ocean level simulations were developed using the same reasoning.

An average, 12-hour tidal cycle was scaled to the extreme ocean levels in Table C.2 to define

the ocean boundary of the model. During the extreme ocean level simulations, flows from

the catchments and the TJ River were set to zero. Lastly, for the extreme precipitation

scenarios, the hydrographs predicted by the hydrologic model associated with the rainfall

events in Table C.2 were input as point sources to the hydraulic model at the catchment

outlets (Figure 3.1). During these simulations, the ocean boundary conditions were defined as
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mean-tidal cycles, while the flows from the TJ River were set to zero. This approach results

in an ensemble of hydraulic model output that is a function of 1) exceedance probability

and 2) flood drivers. We combined the results of these simulations into hazard maps using

probability rules and post-processing techniques.

C.3 Post-Processing Methods

For each hydraulic model simulation, we saved the cell-centered maximum flood depths, unit

discharges, depth averaged shear stresses, and durations of depth greater than 0.11 m. These

“hazard variables”, denoted collectively asH, were processed following simulation to produce

the various hazard maps. To create a continuous raster surface from the discrete H values of

the hydraulic model cell-centers, we used an inverse distance weighted interpolation scheme.

The continuous raster surfaces are the mapped hazard data shown in this study. The Los

Laureles hazard maps of H required no further post-processing, since only one driver was

considered. However, for the TRV hazard maps, we contoured the maximum value between

the three different drivers of flooding

Hi = max({HA
i , HB

i , HC
i }) (C.3)

where Hi is the mapped hazard value at raster surface location i, and the superscripts A,

B, and C denote H values resulting from extreme ocean level, TJ river flow, and extreme

precipitation simulations, respectively. HA
i , HB

i , and HC
i are associated with the same

exceedance probabilities when combined in this manner. The TRV hazard maps therefore

depict flood hazards with specific exceedance probabilities resulting from either driver of

flooding considered, depending on location within the TRV.

The maps contouring the exceedance probabilities of specific flood hazard thresholds required
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n p
1

3

2
0.01

0.1

0.05

(A) (B)

(C) Eq. A4 (D)

P
0.11

0.14
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Figure C.3: Illustration of methodology for mapping the exceedance probability of a hazard
threshold from multiple flood drivers. A) Raster of PA

i values for generic flood driver, A.
B) Raster of PB

i values for generic flood driver, B. C) Raster of PC
i values for generic flood

driver, C. D) Exceedance probability raster of Pi values resulting from flood driver A, B, or
C.

additional processing. First, raster surfaces of exceedance probability Pi were created for

each flood driver considered. Given a set of hydraulic model output corresponding to n

exceedance probabilities, p1, p2, . . . pn, the exceedance probability at raster location i is given

by the largest value of p for which the hazard level Hi exceeds a prescribed threshold. To

account for the three drivers of flooding in TRV, three probability rasters surfaces were

computed: PA
i , P

B
i and PC

i , which denote the probability of exceeding the hazard threshold

from extreme ocean levels, TJ river floods, and extreme precipitation, respectively. Next,

based on the assumption of independence between drivers, the mapped probability is given

by

Pi = PA
i + PB

i + PC
i − PA

i · PB
i − PA

i · PC
i − PB

i · PC
i − PA

i · PB
i · PC

i (C.4)

where Pi is the exceedance probability of the hazard threshold at location i resulting from

all drivers of flooding considered. In Los Laureles, Pi = PC
i since only flooding caused

by extreme precipitation was simulated. Notice that Equation C.4 results from probability
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addition rules of three independent events, and could be expanded or contracted depending

on the number of flood drivers considered. Figure C.3 illustrates this mapping methodology.
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